

Client : Lancashire County Council

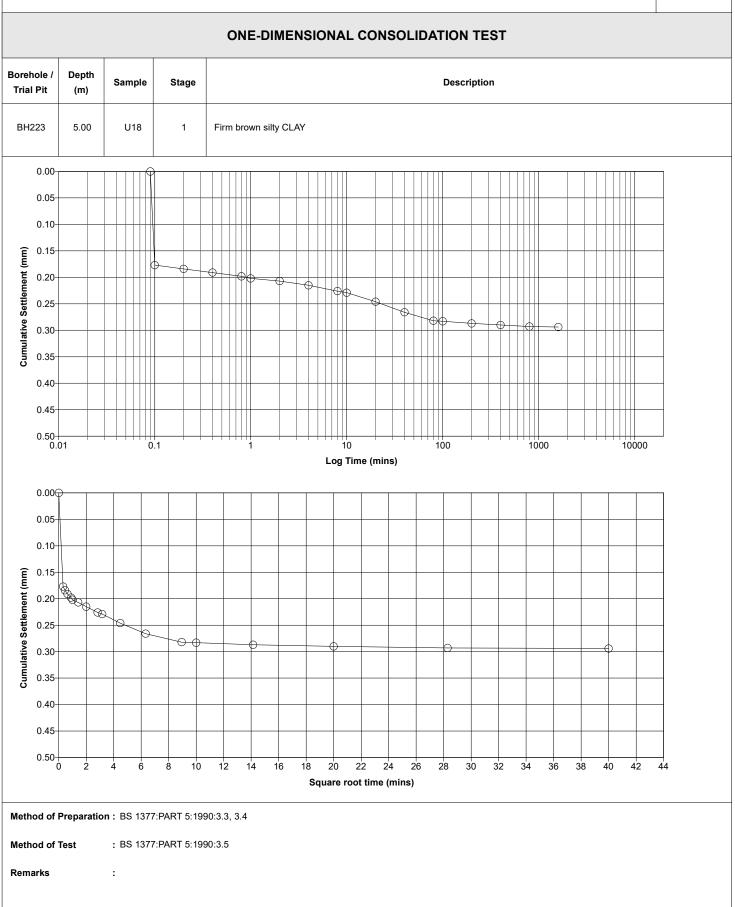
Laboratory Test Report - 41455E

Job Number

41455E

Page

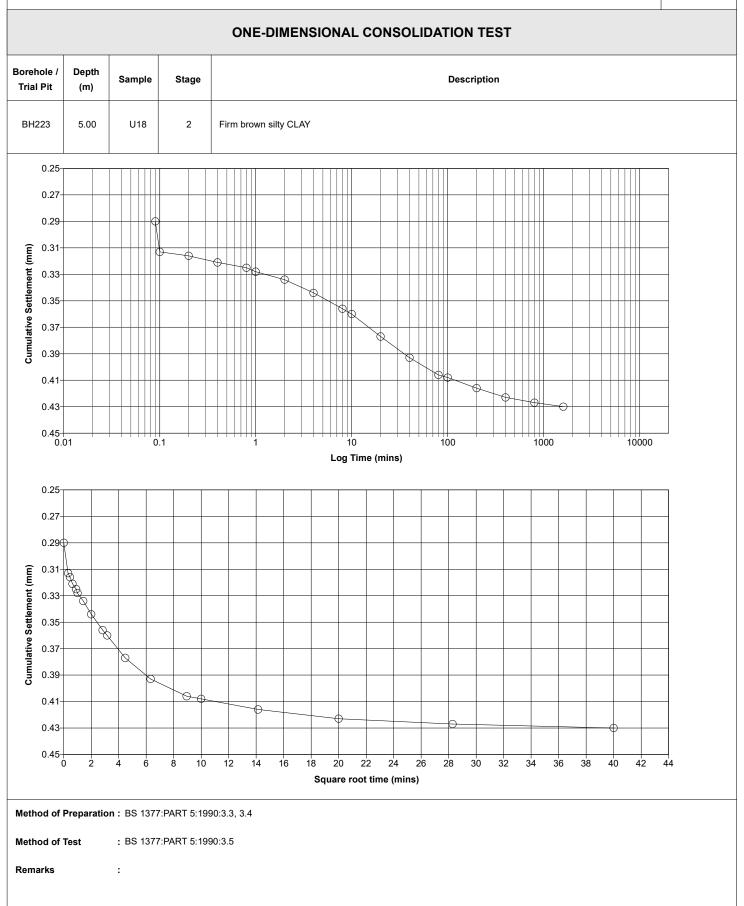
393 / 457


ONE-DIMENSIONAL CONSOLIDATION TEST Borehole / Depth Sample Description Trial Pit (m) BH223 5.00 U18 Firm brown silty CLAY Length of Sample (mm) 450 Initial Specimen Depth from top of sample (mm) 50 Condition of Sample: Undisturbed Orientation: Vertical 0.47 75.05 Q Diameter (mm) 2.65 Particle Density (Mg/m³) 0.46 (Assumed) ф Swelling Pressure (kN/m²) 0.45-Lab Temp (°C) 21 0.44-T Inital Final **VOID RATIO** 0.43 Height (mm) 19.07 17.62 Wet Weight (g) 180.05 176.84 0.42 Moisture Content (%) 20 19 Bulk Density (Mg/m³) 0.41 2.13 2.27 Dry Density (Mg/m³) 1.78 1.91 0.40-Void Ratio 0.489 0.387 Degree of Saturation (%) 105.67 127.91 0.39-0.38 10 100 PRESSURE kN/m² Pressure Μv Cv Void Pressure Μv Cv Void m²/MN kN/m² m²/MN m²/year Ratio kN/m² m²/year Ratio 0.60 0.467 25 13 2.6 0.457 50 0.29 0.439 100 0.27 2.6 200 0.17 2.4 0.415 400 0.383 0.12 2.0 Method of Preparation : BS 1377:PART 5:1990:3.3, 3.4 Method of Test : BS 1377:PART 5:1990:3.5 Remarks :

Site Client Preston Western Distributor Road, Preston
 Lancashire County Council

Job Number 41455E

Page

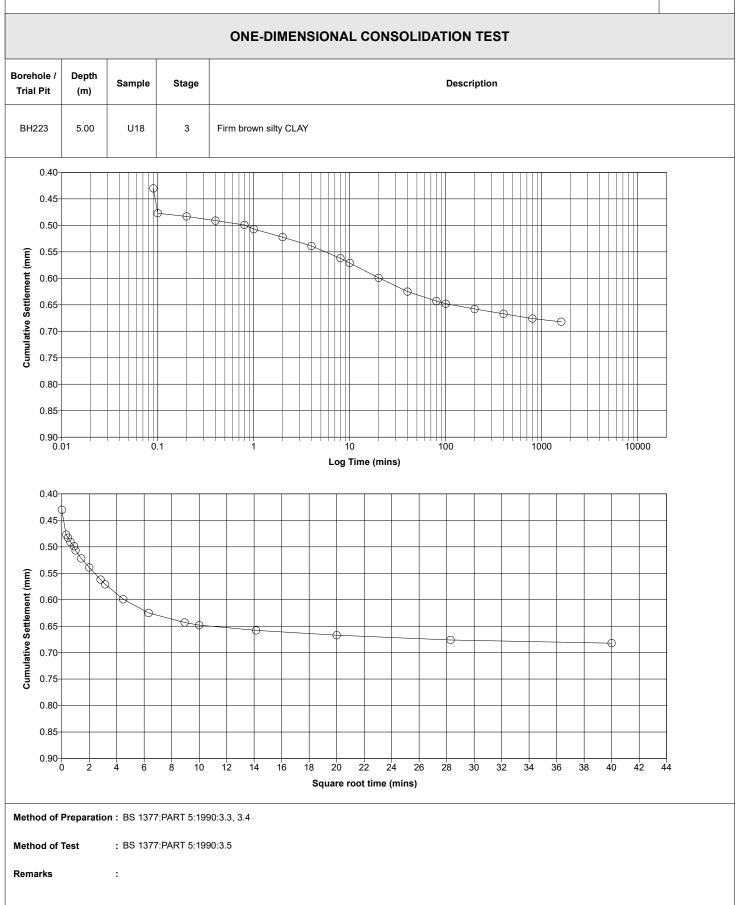


Site Client Preston Western Distributor Road, Preston
 Lancashire County Council

Job Number 41455E

Page

Site

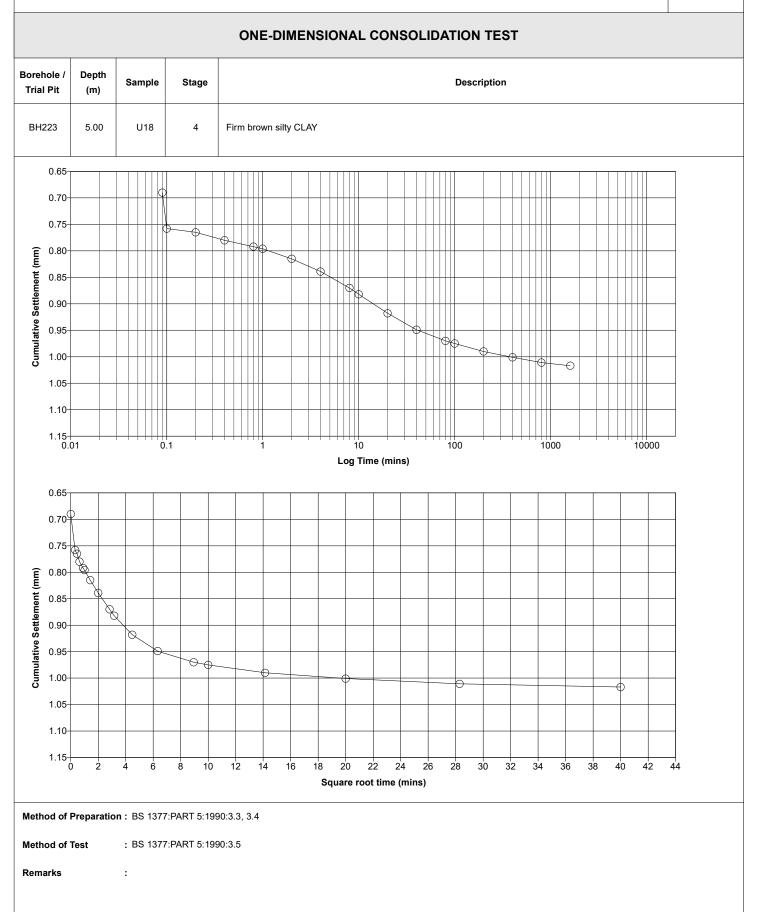

Client

: Lancashire County Council

: Preston Western Distributor Road, Preston

Job Number 41455E

Page


Site

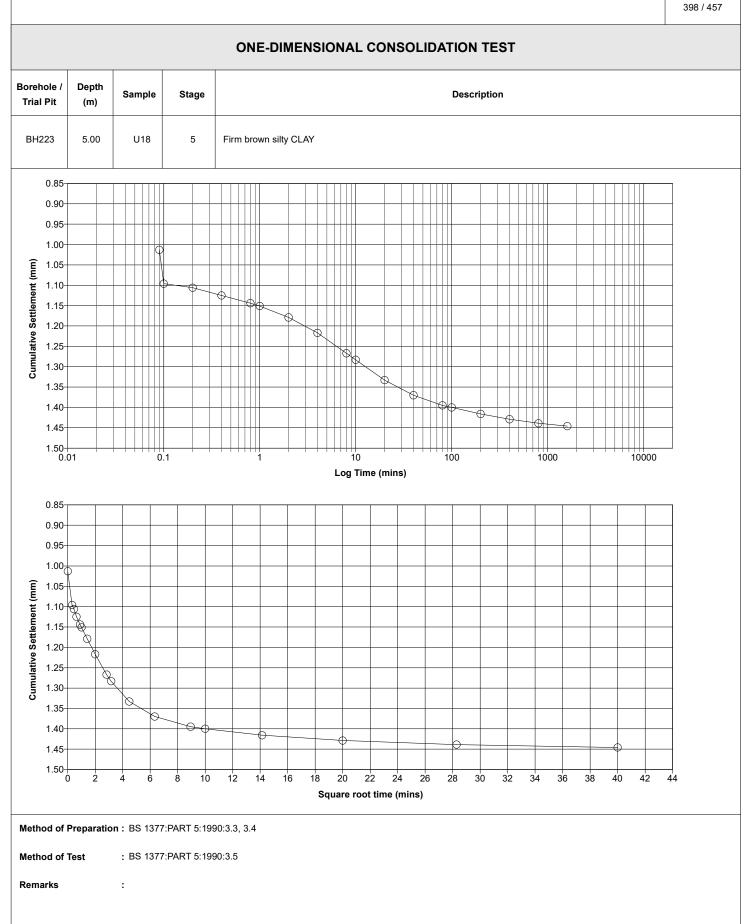
Client

Preston Western Distributor Road, Preston
 Lancashire County Council

Job Number 41455E

Page

Site


Client

: Lancashire County Council

: Preston Western Distributor Road, Preston

Job Number 41455E

Page

Client : Lancashire County Council

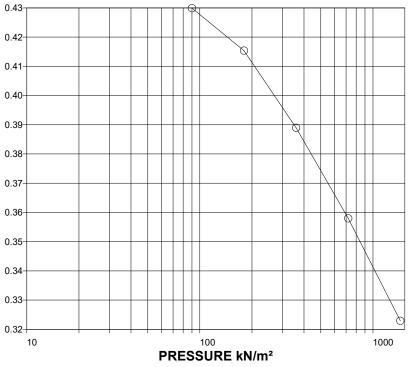
Laboratory Test Report - 41455E

Job Number

41455E

Page

399 / 457


ONE-DIMENSIONAL CONSOLIDATION TEST

Borehole / Trial Pit	Depth (m)	Sample	Description
BH223	17.00	U47	Brown sandy gravelly CLAY

u	77772	Length of Sample (mm)		450
ecimer		Depth from top of sample (mm)		50
itial Sp		Condition of Sample:	Undisturbed	
lnit		Orientation:	Vertical	

Diameter (mm)	75.09
Particle Density (Mg/m³)	2.65 (Assumed)
Swelling Pressure (kN/m²)	
Lab Temp (°C)	21

	Inital	Final	o
Height (mm)	19.02	17.15	RATIO
Wet Weight (g)	178.57	176.19	ЫD
Moisture Content (%)	16	17	VOID
Bulk Density (Mg/m³)	2.12	2.32	
Dry Density (Mg/m³)	1.83	1.99	
Void Ratio	0.448	0.332	
Degree of Saturation (%)	95.23	133.14	

Μv

m²/MN

Cv

m²/year

Void

Ratio

Pressure

kN/m²

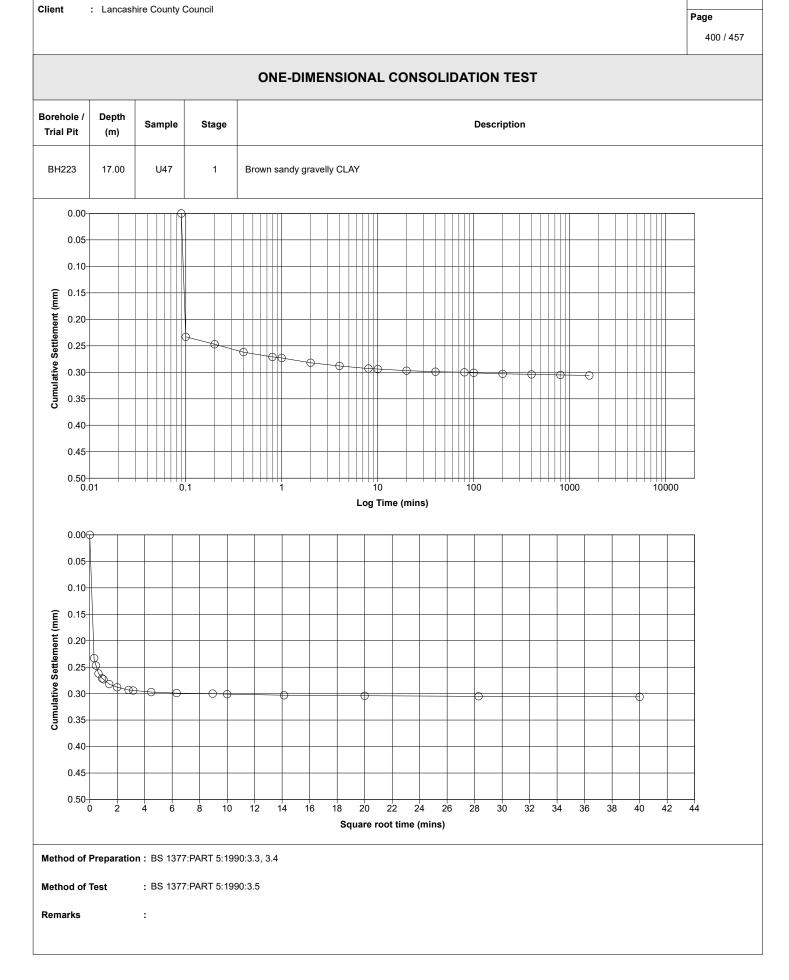
Mv m²/MN	Cv m²/year	Void Ratio
0.18	22	0.430
0.13	14	0.415
0.11	8.8	0.389
0.07	6.3	0.358
0.04	4.0	0.323
	m²/MN 0.18 0.13 0.11 0.07	m²/MN m²/year 0.18 22 0.13 14 0.11 8.8 0.07 6.3

Method of Preparation: BS 1377:PART 5:1990:3.3, 3.4

:

Method of Test

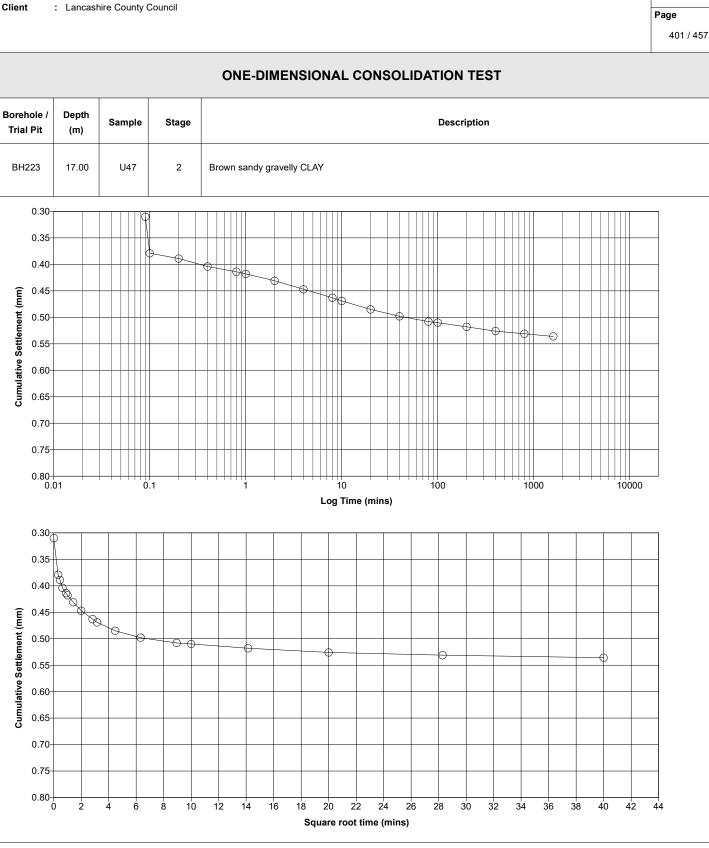
: BS 1377:PART 5:1990:3.5


Remarks

Job Number

41455E

Site : Preston Western Distributor Road, Preston


Job Number

41455E

Site : Preston Western Distributor Road, Preston

Client

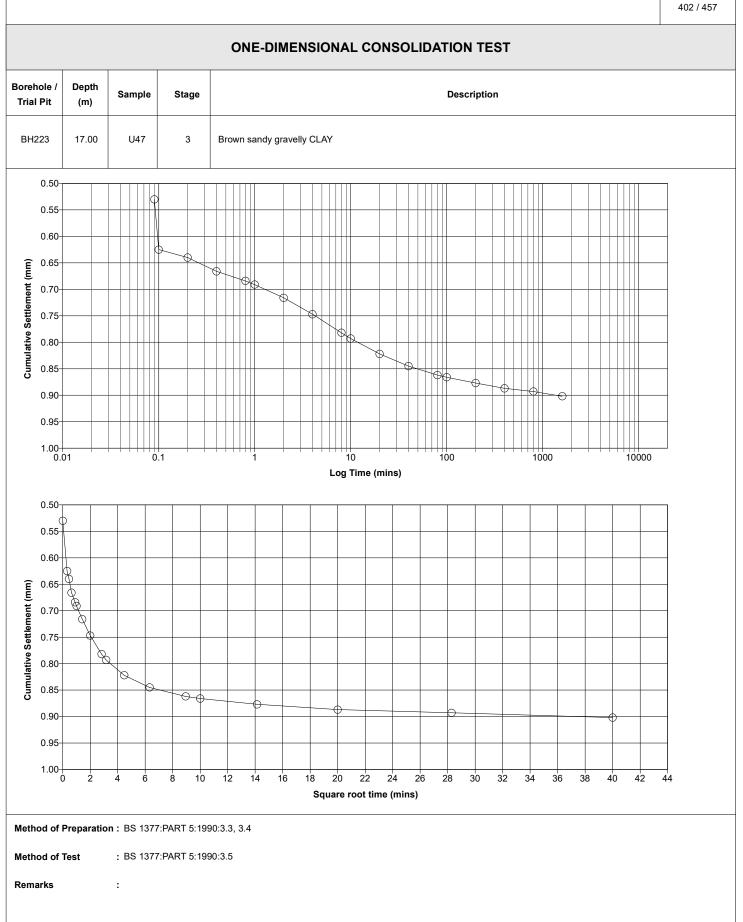
Cumulative Settlement (mm)

Method of Preparation: BS 1377:PART 5:1990:3.3, 3.4

: BS 1377:PART 5:1990:3.5 Method of Test

:

Remarks

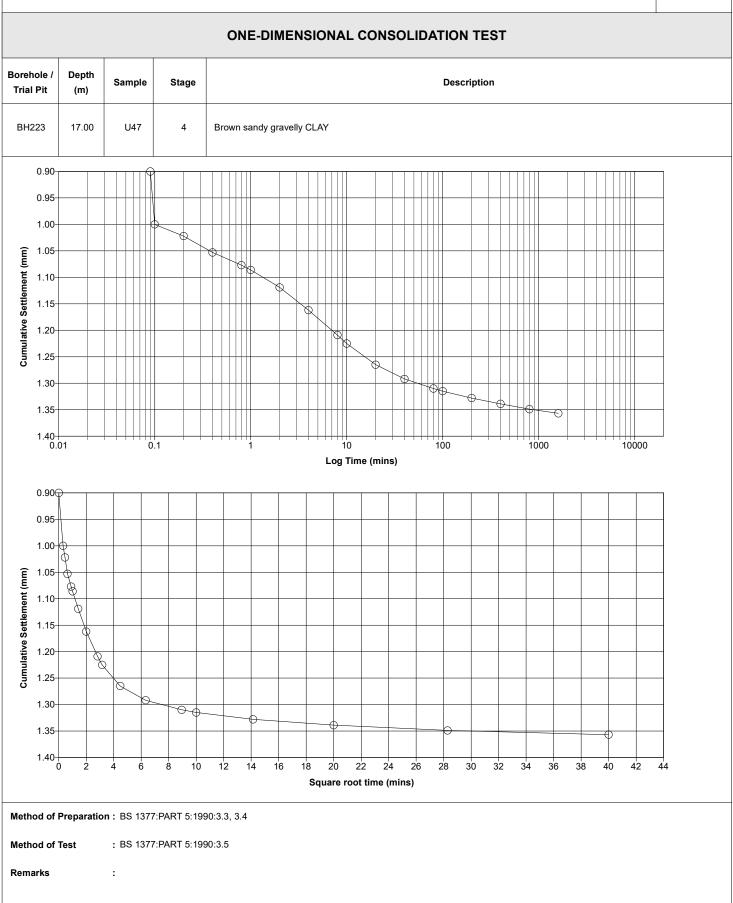

Cumulative Settlement (mm)

Site : Preston Western Distributor Road, Preston

Client

: Lancashire County Council

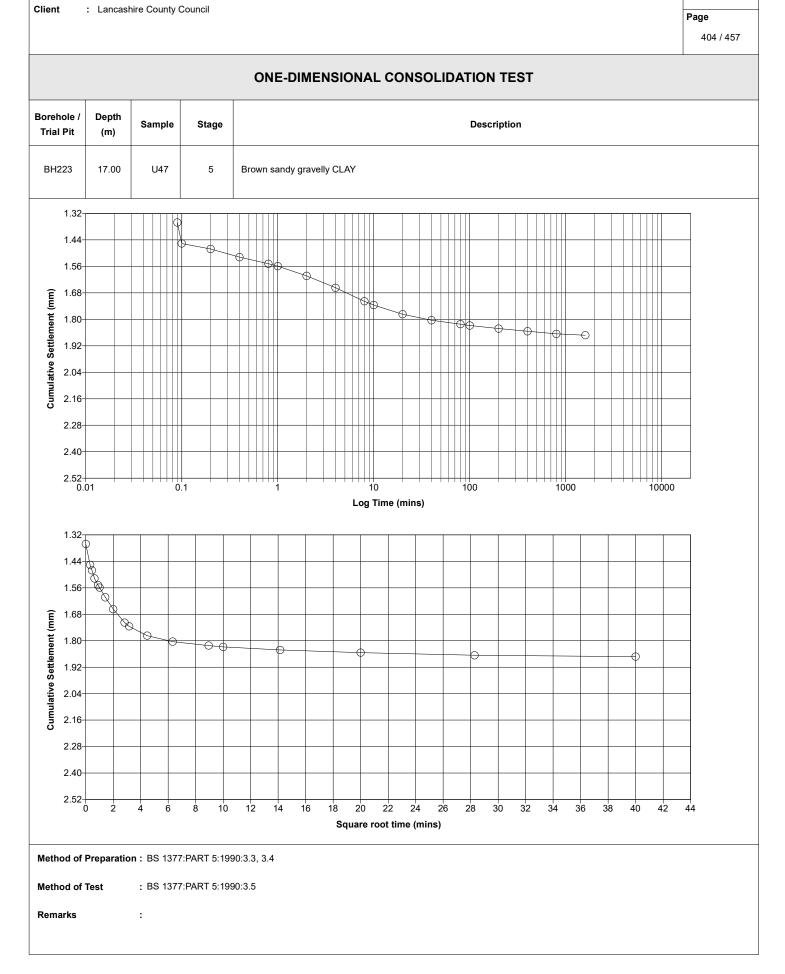
Job Number 41455E


Page

Site Client

: Preston Western Distributor Road, Preston : Lancashire County Council Job Number 41455E

Page



Job Number

41455E

Site

: Preston Western Distributor Road, Preston

Soil

Analysed as Soil

Soil Suite 1

													-
			SA	L Reference	413640 001	413640 002	413640 003	413640 004	413640 005	413640 006	413640 007	413640 008	413640 009
		Custor	ner Sampl	e Reference	BH10	BH119	BH121	BH121	BH121	BH125	BH127	BH128	BH128
			D	ate Sampled	16-JUL- 2014	18-JUL- 2014	17-JUL- 2017	17-JUL- 2017	22-JUL- 2014	21-JUL- 2014	16-JUL- 2014	16-JUL- 2014	15-JUL- 2014
				Depth	0.25	0.50	1.00	3.00	5.00	0.25	0.50	1.80	3.80
				Туре	Topsoil	Sandy Soil	Clay	Clay	Clay	Topsoil	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units									
Arsenic	Т6	M40	2	mg/kg	6	7	9	7	8	7	7	7	7
Boron (water-soluble)	Т6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium	Т6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	Т6	M40	1	mg/kg	19	25	30	32	28	22	29	25	30
Copper	T6	M40	1	mg/kg	16	17	19	21	16	15	17	17	15
Lead	T6	M40	1	mg/kg	27	21	15	34	11	28	11	18	14
Mercury	Т6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
Nickel	T6	M40	1	mg/kg	14	23	30	30	28	15	30	22	26
Selenium	Т6	M40	3	mg/kg	<3	<3	<3	<3	<3	<3	<3	<3	<3
Zinc	Т6	M40	1	mg/kg	57	50	42	56	45	38	45	40	40
Mass Fraction of organic carbon	T286	M40			0.012	0.012	0.0064	0.018	0.0027	0.040	0.0040	0.021	0.0070
pH	T7	AR			7.8	8.3	7.3	7.2	7.8	5.3	6.1	6.3	6.9
SO4(Total)	T6	M40	0.01	%	0.05	0.05	0.14	0.08	0.02	0.10	0.02	0.10	0.04
Sulphide	T546	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1

SAL Reference: 413640 Project Site: Western Distributor Road, Preston Customer Reference: 41455

Soil Soil Suite 1

Analysed as Soil

	- 2		SA	L Reference	413640 010	413640 011	413640 012	413640 013	413640 014	413640 015	413640 016	413640 017	413640 018
		Custon	ner Samp	le Reference	BH223	BH49	BH79	BH101	BH115	BH117	BH13	BH210	BH216
			D	ate Sampled	e Sampled 25-JUL- 2014		07-JUL- 2014	11-JUL- 2014	15-JUL- 2014	04-JUL- 2014	14-JUL- 2014	14-JUL- 2014	14-JUL- 2014
			1.0	Depth	0.50	0.50	0.50	0.50	0.25	0.80	0.50	1.00	0.50
				Туре	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units					19.00				
Arsenic	Т6	M40	2	mg/kg	10	10	9	8	7	7	5	8	5
Boron (water-soluble)	Т6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium	Т6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	Т6	M40	1	mg/kg	32	36	29	25	31	31	33	37	22
Copper	Т6	M40	1	mg/kg	18	14	14	15	14	21	15	14	9
Lead	Т6	M40	1	mg/kg	13	13	14	11	12	30	14	17	8
Mercury	Т6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
Nickel	Т6	M40	1	mg/kg	31	31	25	26	25	25	27	25	16
Selenium	Т6	M40	3	mg/kg	<3	<3	<3	<3	<3	<3	<3	<3	<3
Zinc	Т6	M40	1	mg/kg	46	40	38	43	38	62	39	49	21
Mass Fraction of organic carbon	T286	M40			0.0030	0.0030	0.0043	0.0018	0.0019	0.030	0.0042	0.0089	0.0016
pH	T7	AR			6.9	5.7	6.8	6.4	6.8	6.2	5.9	6.4	7.2
SO4(Total)	T6	M40	0.01	%	0.02	0.03	0.03	0.03	0.01	0.12	0.02	0.06	0.01
Sulphide	T546	AR	1	mg/kg	<1	<1	<1	<1	3	<1	<1	<1	<1

Soil

Analysed as Soil

Soil Suite 1

			SA	L Reference	413640 019	413640 020	413640 021	413640 022	413640 023	413640 024	413640 025	413640 026
		Custon	ner Sampl	e Reference	BH222	BH224	BH45	BH71	BH73	BH76	BH85	BH92
			D	ate Sampled	14-JUL- 2014	14-JUL- 2014	07-JUL- 2014	21-JUL- 2014	21-JUL- 2014	18-JUL- 2014	11-JUL- 2014	09-JUL- 2014
				Depth	0.50	0.50	0.50	0.25	0.50	0.50	0.90	0.60
				Туре	Clay							
Determinand	Method	Test Sample	LOD	Units		-	-					-
Arsenic	T6	M40	2	mg/kg	11	8	9	10	6	5	4	9
Boron (water-soluble)	T6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium	T6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	T6	M40	1	mg/kg	31	27	29	30	34	29	30	30
Copper	T6	M40	1	mg/kg	17	15	18	21	19	17	18	18
Lead	T6	M40	1	mg/kg	18	11	11	34	13	12	12	12
Mercury	T6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Nickel	T6	M40	1	mg/kg	22	25	30	21	35	27	30	33
Selenium	T6	M40	3	mg/kg	<3	<3	<3	<3	<3	<3	<3	<3
Zinc	Т6	M40	1	mg/kg	41	39	43	54	50	45	47	54
Mass Fraction of organic carbon	T286	M40			0.0086	0.0038	0.0026	0.026	0.0053	0.018	0.0055	0.0022
pН	T7	AR			6.8	7.4	8.1	7.1	7.4	6.9	7.4	7.6
SO4(Total)	T6	M40	0.01	%	0.03	0.02	0.02	0.12	0.02	0.11	0.04	0.01
Sulphide	T546	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1

SAL Reference: 413640 Project Site: Western Distributor Road, Preston Customer Reference: 41455

Soil

Analysed as Soil

Miscellaneous

		23	SA	L Reference	413640 001	413640 002	413640 003	413640 004	413640 005	413640 006	413640 007	413640 008	413640 009
		Custon	ner Sampl	e Reference	BH10	BH119	BH121	BH121	BH121	BH125	BH127	BH128	BH128
			Da	ate Sampled	16-JUL-2014	18-JUL-2014	17-JUL-2017	17-JUL-2017	22-JUL-2014	21-JUL-2014	16-JUL-2014	16-JUL-2014	15-JUL-2014
				Depth	0.25	0.50	1.00	3.00	5.00	0.25	0.50	1.80	3.80
				Туре	Topsoil	Sandy Soil	Clay	Clay	Clay	Topsoil	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units									
Asbestos ID	T27	AR			N.D.								

SAL R	eference:	413640											
Pro	ject Site:	Western D	Distributor I	Road, Prestor	ı								
Customer R	eference:	41455											
Soil Miscellaneous		Analysed	as Soil										
			SA	Reference	413640 010	413640 011	413640 012	413640 013	413640 014	413640 015	413640 016	413640 017	413640 018
		Custon	ner Sampl	e Reference	BH223	BH49	BH79	BH101	BH115	BH117	BH13	BH210	BH216
			Da	te Sampled	25-JUL-2014	17-JUL-2014	07-JUL-2014	11-JUL-2014	15-JUL-2014	04-JUL-2014	14-JUL-2014	14-JUL-2014	14-JUL-2014
				Depth	0.50	0.50	0.50	0.50	0.25	0.80	0.50	1.00	0.50
	Туре	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay			
Determinand	Method	Test Sample	LOD	Units									
Asbestos ID	T27	AR			N.D.								

		440640		. <u> </u>									1
	Reference:											1	1
	•		Jistributor F	Road, Preston	1							I	
Customer	Reference:	41455										I	
Soil		Analysed	as Soil									I	
Aiscellaneous		Analysed	as son									1	1
liscellaneous												1	
			SA	L Reference	413640 019	413640 020	413640 021	413640 022	413640 023	413640 024	413640 025	413640 026	
		Custor		le Reference	BH222	BH224	BH45	BH71	BH73	BH76	BH85	BH92	1
							1 1						
				Depth	0.50	0.50	0.50	0.25	0.50	0.50	0.90	0.60	1
				Туре		Clay	Clay	Clay	Clay	Clay	Clay	Clay	
													1
Determinand	Method	Test Sample	LOD	Units	Í.							1	1
Asbestos ID	T27	AR		[_]	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
	<u> </u>					· · · · · ·	<u>,</u>			<u> </u>	·	<u>ــــــــــــــــــــــــــــــــــــ</u>	1
							<u> </u>	<u> </u>					
	Reference:												
	-		Jistributor F	Road, Preston	1								
Customer	Reference:	41455											
Soil		Analysed	as Soil										
ICERTS Preparation													
							1					1	
				L Reference		413640 002	413640 003	413640 004	413640 005	413640 006	413640 007	413640 008	413640 00
		Custon		le Reference	BH10	BH119	BH121	BH121	BH121	BH125	BH127	BH128	BH128
			Da				17-JUL-2017	1 1					-
				Depth	0.25	0.50	1.00	3.00	5.00	0.25	0.50	1.80	3.80
				Туре	Topsoil	Sandy Soil	Clay	Clay	Clay	Topsoil	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units									
Noisture @ 105 C	T162	AR	0.1	%	12	15	15	20	14	18	14	15	16
				1000						E.			
P	Reference: Project Site: Reference:	: Western D		Road, Preston									
				D-ference	110040.010	110040 011	110040 012	110040 013	110040 014	110040 015	10040.016	10040.017	413640 01
		Custor											
		Custon										1	BH216
			Da										
													0.50
				I ype	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay
	T., '	Teet '		Units			1						
Determinand	Method	Test Sample	LOD	·	Ļ						1 *	1 *	1 10
ICERTS Preparation		Custon	SAL mer Sample Da	Depth Type	BH223 25-JUL-2014 0.50	413640 011 BH49 17-JUL-2014 0.50 Clay	413640 012 BH79 07-JUL-2014 0.50 Clay	413640 013 BH101 11-JUL-2014 0.50 Clay	413640 014 BH115 15-JUL-2014 0.25 Clay	0.80 Clay	0.50 Clay	1.00 Clay	В 14-Ј
		Sample	+ +	<u></u>	·								1 40
Determinand Moisture @ 105 C	T162	Sample AR	0.1	%	13	15	11	13	15	15	19	12	18

			SA	L Reference	413640 019	413640 020	413640 021	413640 022	413640 023	413640 024	413640 025	413640 026
		Custon	ner Sampl	e Reference	BH222	BH224	BH45	BH71	BH73	BH76	BH85	BH92
			Da	ate Sampled	14-JUL-2014	14-JUL-2014	07-JUL-2014	21-JUL-2014	21-JUL-2014	18-JUL-2014	11-JUL-2014	09-JUL-2014
				Depth	0.50	0.50	0.50	0.25	0.50	0.50	0.90	0.60
				Туре	Clay							
Determinand	Method	Test Sample	LOD	Units								
Moisture @ 105 C	T162	AR	0.1	%	13	13	<0.1	17	14	26	19	16

Soil

Analysed as Soil

PAH US EPA 16 (B and K split)

			SA	L Reference	413640 001	413640 002	413640 003	413640 004	413640 005	413640 006	413640 007	413640 008	413640 009
		Custon	ner Sampl	e Reference	BH10	BH119	BH121	BH121	BH121	BH125	BH127	BH128	BH128
			Da	ate Sampled	16-JUL- 2014	18-JUL- 2014	17-JUL- 2017	17-JUL- 2017	22-JUL- 2014	21-JUL- 2014	16-JUL- 2014	16-JUL- 2014	15-JUL- 2014
				Depth	0.25	0.50	1.00	3.00	5.00	0.25	0.50	1.80	3.80
				Туре	Topsoil	Sandy Soil	Clay	Clay	Clay	Topsoil	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units									
Naphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.6	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	1.3	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	7.3	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	1.9	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	7.3	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	5.8	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	2.6	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	2.7	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	3.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	1.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	2.4	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	1.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	1.2	<0.1	<0.1	<0.1	<0.1	<0.1
PAH(total)	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	40	<0.1	<0.1	<0.1	<0.1	<0.1

SAL Reference: 413640

Project Site: Western Distributor Road, Preston

Customer Reference: 41455

Soil

Analysed as Soil

PAH US EPA 16 (B and K split)

			SA	L Reference	413640 010	413640 011	413640 012	413640 013	413640 014	413640 015	413640 016	413640 017	413640 018
		Custon	ner Sampl	e Reference	BH223	BH49	BH79	BH101	BH115	BH117	BH13	BH210	BH216
			Da	ate Sampled	25-JUL- 2014	17-JUL- 2014	07-JUL- 2014	11-JUL- 2014	15-JUL- 2014	04-JUL- 2014	14-JUL- 2014	14-JUL- 2014	14-JUL- 2014
				Depth	0.50	0.50	0.50	0.50	0.25	0.80	0.50	1.00	0.50
				Туре	Clay								
Determinand	Method	Test Sample	LOD	Units									
Naphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PAH(total)	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Soil

Analysed as Soil

PAH US EPA 16 (B and K split)

			SA	L Reference	413640 019	413640 020	413640 021	413640 022	413640 023	413640 024	413640 025	413640 026
		Custor	ner Sampl	e Reference	BH222	BH224	BH45	BH71	BH73	BH76	BH85	BH92
			Da	ate Sampled	14-JUL- 2014	14-JUL- 2014	07-JUL- 2014	21-JUL- 2014	21-JUL- 2014	18-JUL- 2014	11-JUL- 2014	09-JUL- 2014
				Depth	0.50	0.50	0.50	0.25	0.50	0.50	0.90	0.60
				Туре	Clay							
Determinand	Method	Test Sample	LOD	Units			_				_	
Naphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PAH(total)	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SAL Reference: 413640

Project Site: Western Distributor Road, Preston

Customer Reference: 41455

Soil

Analysed as Soil

Total Petroleum Hydrocarbons with Speciation

			SA	L Reference	413640 001	413640 002	413640 003	413640 004	413640 005	413640 006	413640 007	413640 008	413640 009
		Custor	ner Samp	le Reference	BH10	BH119	BH121	BH121	BH121	BH125	BH127	BH128	BH128
			D	ate Sampled	16-JUL-2014	18-JUL-2014	17-JUL-2017	17-JUL-2017	22-JUL-2014	21-JUL-2014	16-JUL-2014	16-JUL-2014	15-JUL-2014
				Depth	0.25	0.50	1.00	3.00	5.00	0.25	0.50	1.80	3.80
				Туре	Topsoil	Sandy Soil	Clay	Clay	Clay	Topsoil	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units									
TPH Speciation	T206	M105			N.D.	N.D.		Fraction Start CNo (56) 14 Fraction Peak CNo (56) 24 Fraction End CNo (56) 40 Heavy Mineral Range Organics (56)	N.D.	N.D.	N.D.	N.D.	N.D.

Soil

Analysed as Soil

Total Petroleum Hydrocarbons with Speciation

		-											
			SA	L Reference	413640 010	413640 011	413640 012	413640 013	413640 014	413640 015	413640 016	413640 017	413640 018
		Custon	ner Sampl	e Reference	BH223	BH49	BH79	BH101	BH115	BH117	BH13	BH210	BH216
			Da	ate Sampled	25-JUL-2014	17-JUL-2014	07-JUL-2014	11-JUL-2014	15-JUL-2014	04-JUL-2014	14-JUL-2014	14-JUL-2014	14-JUL-2014
	1					0.50	0.50	0.50	0.25	0.80	0.50	1.00	0.50
				Туре	Clay								
Determinand	Method	Test Sample	LOD	Units					_				_
TPH Speciation	T206	M105			N.D.								

SAL Reference: 413640

Project Site: Western Distributor Road, Preston

Customer Reference: 41455

Soil Analysed as Soil

			SA	L Reference	413640 019	413640 020	413640 021	413640 022	413640 023	413640 024	413640 025	413640 02
		Custor	ner Sampl	e Reference	BH222	BH224	BH45	BH71	BH73	BH76	BH85	BH92
			Da	ate Sampled	14-JUL-2014	14-JUL-2014	07-JUL-2014	21-JUL-2014	21-JUL-2014	18-JUL-2014	11-JUL-2014	09-JUL-20
				Depth	0.50	0.50	0.50	0.25	0.50	0.50	0.90	0.60
				Туре	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units				2010				
PH Speciation	T206	M105			Fraction Start CNo 14	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
					Fraction Peak CNo 28							
					Fraction End CNo 40					Dec.		
		- 2	2018		Heavy Mineral Range Organics		1.25		1			

Soil

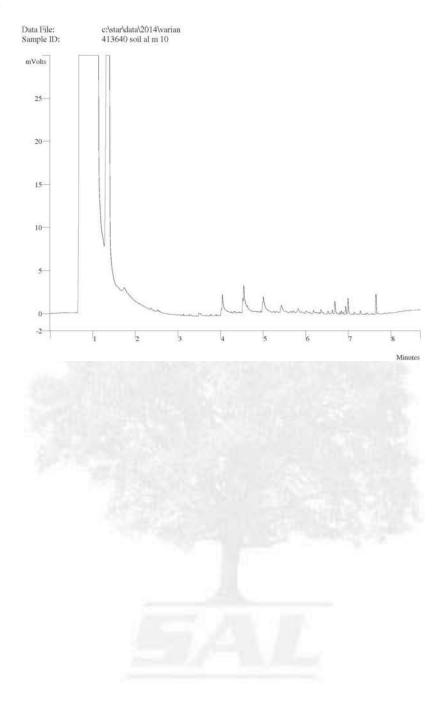
Analysed as Soil

Total Petroleum Hydrocarbons CWG

			SA	Reference	413640 001	413640 002	413640 003	413640 004	413640 005	413640 006	413640 007	413640 008	413640 009
		Custor	ner Sampl	e Reference	BH10	BH119	BH121	BH121	BH121	BH125	BH127	BH128	BH128
			Da	ate Sampled	16-JUL- 2014	18-JUL- 2014	17-JUL- 2017	17-JUL- 2017	22-JUL- 2014	21-JUL- 2014	16-JUL- 2014	16-JUL- 2014	15-JUL- 2014
				Depth	0.25	0.50	1.00	3.00	5.00	0.25	0.50	1.80	3.80
				Туре	Topsoil	Sandy Soil	Clay	Clay	Clay	Topsoil	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units					_		_		
Benzene	T209	M105	10	µg/kg	⁽¹³⁾ <10								
Toluene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
EthylBenzene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
M/P Xylene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
O Xylene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
Methyl tert-Butyl Ether	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH (C5-C6 aliphatic)	T209	M105	0.100	mg/kg	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
TPH (C6-C8 aliphatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aliphatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C10-C12 aliphatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C12-C16 aliphatic)	T206	M105	2	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2
TPH (C16-C21 aliphatic)	T206	M105	1	mg/kg	<1	<1	<1	4	<1	<1	<1	<1	<1
TPH (C21-C35 aliphatic)	T206	M105	4	mg/kg	<4	<4	<4	26	<4	<4	<4	<4	<4
TPH (C6-C7 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C7-C8 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C10-C12 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C12-C16 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	1	<1	<1	<1	<1	<1
TPH (C16-C21 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	10	<1	<1	<1	<1	<1
TPH (C21-C35 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	14	<1	<1	<1	<1	<1

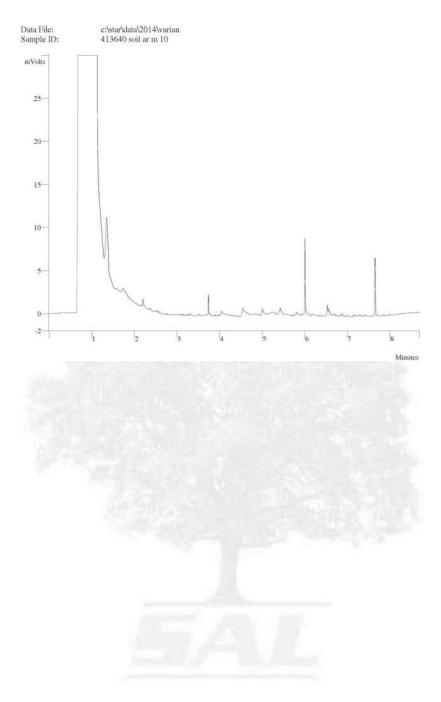
SAL Reference: 413640 Project Site: Western Distributor Road, Preston Customer Reference: 41455

Soil


Analysed as Soil

Total Petroleum Hydrocarbons CWG

			SA	L Reference	413640 010	413640 011	413640 012	413640 013	413640 014	413640 015	413640 016	413640 017	413640 018
		Custor	ner Sampl	e Reference	BH223	BH49	BH79	BH101	BH115	BH117	BH13	BH210	BH216
			Da	ate Sampled	25-JUL- 2014	17-JUL- 2014	07-JUL- 2014	11-JUL- 2014	15-JUL- 2014	04-JUL- 2014	14-JUL- 2014	14-JUL- 2014	14-JUL- 2014
				Depth	0.50	0.50	0.50	0.50	0.25	0.80	0.50	1.00	0.50
				Туре	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units									
Benzene	T209	M105	10	µg/kg	⁽¹³⁾ <10	⁽¹³⁾ <10	(13) <10	(13) <10	⁽¹³⁾ <10	⁽¹³⁾ <10	⁽¹³⁾ <10	(13) <10	(13) <10
Toluene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
EthylBenzene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
M/P Xylene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
O Xylene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
Methyl tert-Butyl Ether	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH (C5-C6 aliphatic)	T209	M105	0.100	mg/kg	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
TPH (C6-C8 aliphatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aliphatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C10-C12 aliphatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C12-C16 aliphatic)	T206	M105	2	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2
TPH (C16-C21 aliphatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C21-C35 aliphatic)	T206	M105	4	mg/kg	<4	<4	<4	<4	<4	<4	<4	<4	<4
TPH (C6-C7 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C7-C8 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C10-C12 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C12-C16 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C16-C21 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C21-C35 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1


413640-al-10.jpg

413640 010 - BH223

413640-ar-10.jpg

413640 010 - BH223

Client : Lancashire County Council Job Number

41455E

Page

21 / 457

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY AND LIQUIDITY INDEX

Davakala	Denth		Natural	Natural	Sample 425µm	Passing Sieve	Liquid	Plastic	Plasticity	Linudalla		
Borehole/ Trial Pit	Depth (m)	Sample	Sieved	Moisture Content %	Percentage %	Moisture Content %	Limit %	Limit %	Index %	Liquidity Index	Class	Description / Remarks
BH223	16.00	D45	Natural	16								Brown sandy CLAY
BH223	17.00	D46	Natural	16								Brown sandy CLAY
BH223	17.00	U47	Natural	16								Brown sandy CLAY
BH223	17.50	D48	Natural	18								Brown sandy CLAY
BH223	17.80	D49	Natural	18								Brown sandy GRAVEL
BH223	19.00	D51	Natural	8.0								Brown sandy GRAVEL
BH223	19.50	D52	Natural	15								Brown sandy GRAVEL
BH223	20.50	D54	Natural	28								Brown sandy GRAVEL
BH224	0.25	D1	Natural	28								Dark brown sandy CLAY includes organic matter
BH224	0.50	D4	Natural	3.5								Mottled brown grey sandy CLAY
BH224 BH224	1.20 1.70	U6 D7	Natural Natural	9.4 9.4	88	10	31	18	13	-0.62	CL	Mottled light brown dark brown light grey sand gravelly CLAY includes organic matter Mottled brown grey sandy gravelly CLAY
BH224	1.80	D8	Natural	15								Brown sandy gravelly CLAY
BH224	2.00	U9	Natural	15								Brown sandy gravelly CLAY
BH224	2.50	D10	Natural	12								Brown sandy gravelly CLAY
BH224	2.80	D11	Natural	21								Brown sandy gravelly CLAY
BH224	3.00	D13	Natural	16								Brown sandy gravelly CLAY
BH224	3.80	D14	Natural	16								Brown sandy gravelly CLAY
BH224	4.00	U15	Natural	16								Soft brown sandy gravelly CLAY
BH224	4.50	D16	Natural	16								Brown sandy gravelly CLAY
BH224	4.80	D17	Natural	16								Brown sandy gravelly CLAY
BH224	5.00	U18	Natural	16	93	17	27	14	13	0.23	CL	Firm brown sandy CLAY
BH224	5.50	D19	Natural	15								Brown sandy gravelly CLAY
BH224	5.80	D20	Natural	16								Brown sandy gravelly CLAY
BH224	6.00	U21	Natural	15								Firm brown sandy gravelly CLAY
BH224	6.50	D22	Natural	24								Brown silty CLAY
BH224	6.80	D23	Natural	25								Brown silty CLAY
BH224	7.00	U24	Natural	16								Firm brown silty gravelly CLAY
BH224	7.50	D25	Natural	25								Brown silty CLAY
BH224	7.80	D26	Natural	19								Brown silty gravelly CLAY
BH224	8.00	U27	Natural	27								Firm brown silty CLAY
BH224	8.50	D28	Natural	22								Brown silty CLAY
BH224	8.80	D29	Natural	16								Brown silty sandy CLAY
BH224	9.00	U30	Natural	17								Firm brown sandy gravelly CLAY
BH224	9.50	D31	Natural	16								Brown sandy gravelly CLAY
BH224	9.80	D32	Natural	16								Brown sandy gravelly CLAY

Method of Test

: BS 1377:PART 2:1990:3.2 Determination of moisture content 4.3 Determination of the liquid limit 5.3 Determination of the plastic limit and plasticity index

Client : Lancashire County Council Job Number

41455E

Page

22 / 457

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY AND LIQUIDITY INDEX

Dame I. I. I.	D		Natural	Natural	Sample 425µm	Passing Sieve	Liquid	Plastic	Plasticity	1.1		
Borehole/ Trial Pit	Depth (m)	Sample	Sieved	Moisture Content %	Percentage %	Moisture Content %	Limit	Limit %	Plasticity Index %	Liquidity Index	Class	Description / Remarks
BH224	10.00	U33	Natural	15	100	15	31	14	17	0.06	CL	Firm brown sandy gravelly CLAY
BH224	10.50	D34	Natural	24								Brown silty CLAY
BH224	10.80	D35	Natural	24								Brown sandy gravelly CLAY
BH224	11.00	U36	Natural	24								Stiff brown sandy gravelly CLAY
BH224	11.50	D37	Natural	23								Brown sandy gravelly CLAY
BH224	12.00	D38	Natural	22								Brown silty CLAY
BH224	13.80	D41	Natural	19								Brown SAND
BH224	14.00	D43	Natural	22								Brown SAND
BH224	15.40	D44	Natural	16								Brown sandy CLAY
BH224	15.50	U45	Natural	14	100	14	31	17	14	-0.21	CL	Stiff brown CLAY
BH224	16.00	D46	Natural	15								Brown sandy CLAY
BH224	16.90	D47	Natural	11								Brown silty gravelly SAND
BH224	17.00	D49	Natural	14								Brown gravelly SAND
BH224	18.00	D50	Natural	12								Brown gravelly SAND
BH224	18.50	D52	Natural	14								Brown gravelly SAND
3H224	19.50	D53	Natural	13								Brown gravelly SAND
3H224	20.00	D55	Natural	13								Brown gravelly SAND
3H45	0.25	D1	Natural	20								Dark brown clayey SAND includes organic
BH45	0.40	B3	Natural	15								matter Mottled brown grey gravelly CLAY
BH45	0.50	D4	Natural	16								Mottled brown grey gravelly CLAY
3H45	1.20	U6	Natural	15								Mottled brown grey gravelly CLAY
BH45	1.70	D7	Natural	14								Mottled brown grey gravelly CLAY
3H45	1.80	D8	Natural	16								Brown silty gravelly CLAY
3H45	2.00	U10	Natural	15								Brown silty gravelly CLAY
3H45	2.80	D11	Natural	14								Brown silty gravelly CLAY
3H45	3.00	U12	Natural	15								Stiff brown gravelly CLAY
3H45	3.50	D13	Natural	14								Brown gravelly CLAY
3H45	3.80	D14	Natural	15								Brown gravelly CLAY
BH45	4.00	D16	Natural	7.7								Brown gravelly CLAY
3H45	4.80	D17	Natural	8.2								Brown gravelly CLAY
3H45	5.00	U18	Natural	16								Firm brown gravelly CLAY
3H45	5.50	D19	Natural	16								Brown gravelly CLAY
3H45	5.80	D20	Natural	14								Brown gravelly CLAY
3H45	6.00	U21	Natural	20								Stiff brown CLAY
3H45	6.50	D22	Natural	19								Brown gravelly CLAY
BH45	6.80	D23	Natural	17								Brown silty gravelly CLAY

Method of Test

: BS 1377:PART 2:1990:3.2 Determination of moisture content 4.3 Determination of the liquid limit 5.3 Determination of the plastic limit and plasticity index

Laboratory Test Report - 41455E

Job Number

41455E

Page

Client : Lancashire County Council

Site

							D	ET	ERI	MIN	IAT	10	N	OF	= P/	AR'	тіс	LE	S	IZ	E D	IST	ſRI	B	UT	101	١								
Boreho Trial F)epth (m)	Sai	mple		Pipet dron		r														Des	crip	otio	n										
BH22	24	4.00	E	342		N/A	٨	В	fown	silty	fine	to r	nec	liun	n SA	ND																			
	, i																																Sieve / Particle Size	Pa	% Issing
100											*	-*	ľ	Π	×	-*			Π	ΠΤ			Т	П	Π								200 mm	1	100
00 -																																	150 mm		100
90 -											Î																						125 mm		100
80 -										-/				$\left \right $									+										90 mm		100
70 -																																	75 mm		100
/0										\downarrow																							63 mm		100
60 -										Ê													-										50 mm		100
50 -																																	37.5 mm		100
50 -																																	28 mm		100
40 -						+	+		H			_					_	++	++-			_	+	\vdash					-				20 mm		100
									И																								14 mm		100
30 -									11																								10 mm		100
20 -						-	+	\downarrow				_				_	_	+				_	+	\square					_				6.3 mm		100
10																																	5 mm		100
10 -																																	3.35 mm		100
0		002	0.006		0.0			 .063		0.2			0.6) っ		2			 5.3			20		Ш.	63		0	 20		63			2 mm		100
	0.	<i>J</i> 02	0.000	55	0.0	2	0	.003		0.4	۲.		0.0	3		2		,				20			03		2	50		00	50		1.18 mm		100
	CLAY	Fine		Mediu	um	Coa	arse		ine		Med	diun	n	Сс	barse	•	Fine			/lec	lium	С	oars	se	- c	овв	LES	во	ULC	DEF	۲S		600 μm		100
		SIL	_1						SANI	נ							GH	AVE	L														425 μm		100
																																	300 μm		99
																																	212 μm		90 90
																																	150 μm		50 54
						Gr	adin	g Aı	nalys	sis								Ра	rtic	le I	Prop	ortic	ons										63 μm		17
					~~					1/	I3.4 J	ım	-				- 1- 1-	1	D				0%	/_		_									·
				De						-	ю. т р		+						• B(bui	ders		0%			_									
				D1	10					-			-				rave					_													
													-				and					-	83			-								-	
							_						-			S	ilt/C	lay					17	%										-	
				Ur	niforn	nity	Coe	ffici	ent	-																									
Metho	d of Pre	paratio	n:B	S 1377	7:PAF	RT 1:	:1990	0:7.3	3 Initi	al pro	epara	atio	n 7	.4.5	5 Pai	ticle	size	test	s																
Prepar	ration D	etails	: Sa	ample	wash	ned v	with I	no d	isper	sant	used	d, O	ver	וD ו	ried a	at 10	5 - 1	10°C)																
Metho	d of Tes	t	: B	S 1377	7:PAF	RT 2:	1990	0:9 E	Deter	mina	ation	of p	arti	cle	size	dist	ributi	ion																	
Remar	rks		:																																

Laboratory Test Report - 41455E

Job Number

41455E

63 / 457

Page

Client : Lancashire County Council

Site

			DE	ETER	MINATIO	N OF	PARTIC	CLE S	SIZE D	DISTR	RIBU	σιτιο	N						
]													•						
Borehole / Trial Pit	Depth (m)	Sample	Pipette/ Hydrometer							Descri	ption								
BH224	18.50	B51	N/A	Browr	n silty very gr	avelly fine	e to mediu	m SANI	D										
		I		<u> </u>													Siev Part Siz	cle	% Pass
100											\mathbf{X}					Π	200 r	าm	100
90																	150 r	۱m	100
									×	\uparrow							125 r	۱m	100
80									1								90 m	n	100
70							-* ⁻									+	75 m		100
60																	63 m		100
																	50 m		100
50																	37.5 28 m		97 92
40 🕂														-		H	20 m		87
																	14 m		84
30																	10 m		82
20																H	6.3 m	m	80
10				<u> </u>						_						Н	5 mm		77
																	3.35	nm	74
0	0.002	0.0063	0.02 0.0	063	0.2	0.63	2	6.3		20	6	3	200		63	0	2 mm		72
	Fine	Medi	um Coarse	Fine	Mediur	n Coar	se Fine	•	Medium	Coa	rse					_	1.18		71
CLA	SIL	T	I	SAN	D		GF	RAVEL				CORE	BLES B		.DER	<u> </u>	600 F		68
																	425 µ		65
																	300 µ 212 µ		55 37
						7											150 μ		23
			Grading	g Analys	sis			Partie	cle Prop	portions	6						63 μr		15
		D	60		365.0 µm	1	Cobb	oles + B	oulders	, 0)%								
			10		-	-	Grav				28%								
						1	Sand			5	57%								
						1	Silt/C	lay		1	5%								
		U	niformity Coef	ficient	-														
					1														
														_					
Method of I	Preparatio	n : BS 137	7:PART 1:1990	:7.3 Initi	ial preparatio	n 7.4.5 P	article size	e tests											
Preparatior	n Details	: Sample	washed with n	o disper	rsant used, C	ven Drie	d at 105 -	110℃											
Method of	Test	: BS 137	7:PART 2:1990	:9 Deter	rmination of p	particle siz	ze distribu	tion											

Client : Lancashire County Council

Laboratory Test Report - 41455E

Job Number

41455E

Page 228 / 457

DETERMINATION OF MOISTURE CONTENT, DENSITY AND UNCONFINED COMPRESSIVE STRENGTH (LOAD FRAME METHOD)

rehole rial Pi	· ·	Sample				Descrip	tion						
3H224	2.00	U9	Brown sandy gravelly CLA	Y									
					Axial Compressive Strength (kPa)	350 - 315 - 280 -							
r.		Length	of Sample (mm)	450	engt	245 -							
Initial Specimen		Depth f	rom top of sample (mm)	50	Str	210 -							
ial Sp		Condition	on of Sample: Undistu	rbed	ve	175 -							
lnit		Orienta	tion: Vertic	al	ssi	140 -	/	/					
Leng	th of Specim	en (mm)		209.4	bre	• 105 -							
Diam	eter of Spec	imen (mm)		102.4	ШO	70 -							
Mois	ture Content	(%)		15			/						
Bulk	Density (Mg	′m³)		2.22	Axia	35 -							
Dry l	Density (Mg/r	n³)		1.93	•	0 + 0		5	10	15	5	20	
Rate	of Strain (%/	min)		0.73					Str	ain %			
lts	Strain at Failu	ure (%)		20.1									
t Results	Unconfined C	Compressiv	e Strength (kPa)	309									
Test	Mode of Failu	(5,5,0)		Plastic									

Method of Preparation	BS 1377:PT1:1990:7.4.2 Moisture Content, BS 1377:PT1:1990:8.3 Preparation of undisturbed samples for testing or BS 1377:PT1:1990 :7.7.5.2 Preparation of disturbed samples for testing.
Method of Test	: BS 1377:PT2:1990:3.2 Determination of moisture content, BS 1377:PT2:1990:7.2 Determination of density by linear measurement BS 1377:PT7:1990:7.2 Determination of unconfined compressive Strength using the Load Frame Method

:

Remarks

Client : Lancashire County Council

Laboratory Test Report - 41455E

Job Number

41455E

Page 229 / 457

DETERMINATION OF MOISTURE CONTENT, DENSITY AND UNCONFINED COMPRESSIVE STRENGTH (LOAD FRAME METHOD)

							mol	,					
orehole / rial Pit	Depth (m)	Sample				Des	criptio	n					
3H224	4.00	U15	Soft brown sandy gravelly	CLAY									
I						10	,						
					Pa)	90	-						
					h (k	' 80	-	/					
c		Length	of Sample (mm)	450	Axial Compressive Strength (kPa)	70	-						
Initial Specimen		Depth f	rom top of sample (mm)	50	Stre	60	-						
ial Sp		Condition	on of Sample: Undistu	rbed	ive i	50	-						
lnit		Orienta	tion: Vertio	al	SSI	40	-	/					
Length	of Specim	en (mm)		209.5	bre	30	- /	/					
Diamete	er of Spec	imen (mm)		102.2	0 Lor	20							
Moistur	e Content	(%)		16									
Bulk De	nsity (Mg	′m³)		2.22	Axia	10	1						
Dry Den	sity (Mg/r	n³)		1.91		0	0	5	10		15	20	2
Rate of	Strain (%/	min)		1.91					St	rain	1 %		
<u>\$</u> Stra	ain at Failu	ure (%)		19.1									
Test Results Unc Mod	confined C	compressiv	e Strength (kPa)	99									
Moc	de of Failu	ire (B/P/C)		Plastic									

Method of Preparation : BS 1377:PT1:1990:7.4.2 Moisture Content, BS 1377:PT1:1990:8.3 Preparation of undisturbed samples for testing or BS 1377:PT1:1990 :7.7.5.2 Preparation of disturbed samples for testing. : BS 1377:PT2:1990:3.2 Determination of moisture content, BS 1377:PT2:1990:7.2 Determination of density by linear measurement BS 1377:PT7:1990:7.2 Determination of unconfined compressive Strength using the Load Frame Method Method of Test

Remarks

:

Client : Lancashire County Council

Laboratory Test Report - 41455E

Job Number

41455E

Page

230 / 457

DETERMINATION OF MOISTURE CONTENT, DENSITY AND UNCONFINED COMPRESSIVE STRENGTH (LOAD FRAME METHOD)

rehole rial Pit	· ·	Sample		
3H224	5.00	U18	Firm brown sandy CLAY	
		1		
ç		Length	of Sample (mm)	450
Initial Specimen		Depth f	rom top of sample (mm)	80
al Sp		Conditi	on of Sample: Undistu	rbed
I Liti		Orienta	tion: Vertic	cal
Leng	th of Specim	ien (mm)		209.5
Diam	eter of Spec	imen (mm)		102.5
Moist	ure Content	(%)		16
Bulk	Density (Mg	/m³)		2.17
Dry D	ensity (Mg/r	n³)		1.86
Rate	of Strain (%/	min)		1.91
s s	train at Fail	ure (%)		19.1
Test Results ≂ ⊂ ∽	Inconfined C	Compressiv	e Strength (kPa)	91
· •• ·		ire (B/P/C)		

Aethod of Preparation : BS 1377:PT1:1990:7.4.2 Moisture Content, BS 1377:PT1:1990:8.3 Preparation of undisturbed samples for testing or BS 1377:PT1:1990 :7.7.5.2 Preparation of disturbed samples for testing.

Method of Test

:

Remarks

Client : Lancashire County Council

Laboratory Test Report - 41455E

Job Number

41455E

Page

231 / 457

DETERMINATION OF MOISTURE CONTENT, DENSITY AND UNCONFINED COMPRESSIVE STRENGTH (LOAD FRAME METHOD)

				(-0)			/					
rehole / rial Pit	Depth (m)	Sample				Descrip	otion					
3H224	6.00	U21	Firm brown sandy gravell	ly CLAY								
)a)	150 135 -						
					Axial Compressive Strength (kPa)	• 120 -						
ç		Length	of Sample (mm)	450		0 105 -						
Initial Specimen		Depth f	rom top of sample (mm)	50	Stre	90 -						
ial Sp		Conditi	on of Sample: Undist	turbed	i ve	75 -						
<u>nit</u>		Orienta	tion: Vert	tical	SSI	60 -	/					
Length	of Specim	en (mm)		209.8	pre	• 45 -						
Diamete	er of Spec	imen (mm)		102.4	- mo	30 -						
Moistur	e Content	(%)		15			/					
Bulk De	ensity (Mg	′m³)		2.20	Axia	15 -						
Dry Der	nsity (Mg/r	n³)		1.92	_ ~	0 + 0		5	10	15	20	2
Rate of	Strain (%/	min)		1.91					Stra	in %		
<u>와</u> Stra	ain at Failu	ure (%)		19.1								
Stra Stra Und	confined C	ompressiv	e Strength (kPa)	133								

Method of Preparation : BS 1377:PT1:1990:7.4.2 Moisture Content, BS 1377:PT1:1990:8.3 Preparation of undisturbed samples for testing or BS 1377:PT1:1990 :7.7.5.2 Preparation of disturbed samples for testing. Method of Test

Plastic

:

Remarks

Test

Mode of Failure (B/P/C)

Client : Lancashire County Council

Laboratory Test Report - 41455E

Job Number

41455E

Page

232 / 457

DETERMINATION OF MOISTURE CONTENT, DENSITY AND UNCONFINED COMPRESSIVE STRENGTH (LOAD FRAME METHOD)

rehol rial P	· · ·	Sample			Description	
3H224	7.00	U24	Firm brown silty gravelly C	LAY		
	I				250	
					e 225 -	
					× 200 -	
		Length	of Sample (mm)	450	Axial Compressive Strength (kPa) 200 - 200 - 175 - 150 - 150 - 100 - 75 - 50 - 25 - 50 - 25 -	
Initial Specimen		Depth f	rom top of sample (mm)	50	150 -	
al Spe		Conditi	on of Sample: Undistu	irbed	9 125 -	
lniti		Orienta	tion: Vertio	cal	100 -	
Len	gth of Spec	imen (mm)		210.3	91d 75 -	
Diar	neter of Sp	ecimen (mm)		103.8		
Moi	sture Conte	nt (%)		16		
Bull	CDensity (N	lg/m³)		2.16		
Dry	Density (M	g/m³)		1.86	0 5 10 15	20
Rate	e of Strain (%/min)		1.90	Strain %	
ults	Strain at Fa	ilure (%)		19		
Test Results	Unconfine	I Compressiv	e Strength (kPa)	157		
I S		ilure (B/P/C)		Plastic		

Method of Preparation	: BS 1377:PT1:1990:7.4.2 Moisture Content, BS 1377:PT1:1990:8.3 Preparation of undisturbed samples for testing or BS 1377:PT1:1990 :7.7.5.2 Preparation of disturbed samples for testing.
Method of Test	: BS 1377:PT2:1990:3.2 Determination of moisture content, BS 1377:PT2:1990:7.2 Determination of density by linear measurement BS

:

Remarks

Client : Lancashire County Council

Laboratory Test Report - 41455E

Job Number

41455E

Page

233 / 457

DETERMINATION OF MOISTURE CONTENT, DENSITY AND UNCONFINED COMPRESSIVE STRENGTH (LOAD FRAME METHOD)

rehole rial Pit	· ·	Sample				Descr	iption						
3H224	8.00	U27	Firm brown silty CLAY										
						150 -							
)a)	135	-						
					h KI	120	-						
_		Length	of Sample (mm)	340	Axial Compressive Strength (kPa)	105	-						
Initial Specimen		Depth f	rom top of sample (mm)	50	Stre	90 -	-		/				
ial Sp(Conditi	on of Sample: Undistu	ırbed	ve	75 ⁻	-	/					
lniti		Orienta	tion: Vertio	cal	ssi	60 ⁻	-						
Leng	th of Speci	men (mm)		209.5	pre	45 ·	-						
Diam	eter of Spe	cimen (mm)		102.6	ШO	30 ⁻		/					
Moist	ture Conte	nt (%)		27		50							
Bulk	Density (M	g/m³)		2.03	Axia	15	/						
Dry D	ensity (Mg	/m³)		1.60		0 -	0	5		10	15	20	
Rate	of Strain (%	%/min)		1.91						Strai	n %		
s Its	Strain at Fa	ilure (%)		17.2									
Test Results	Inconfined	Compressiv	e Strength (kPa)	103									
Test	lode of Fai	lure (B/P/C)		Plastic									

IS 1377:PT1:1990:7.4.2 Moisture Content, BS 1377:PT1:1990:8.3 Preparation of undisturbed samples for testing or BS 1377:PT1:1990 7.7.5.2 Preparation of disturbed samples for testing.

Method of Test

:

Remarks

Client : Lancashire County Council

Laboratory Test Report - 41455E

Job Number

41455E

Page 234 / 457

DETERMINATION OF MOISTURE CONTENT, DENSITY AND UNCONFINED COMPRESSIVE STRENGTH (LOAD FRAME METHOD)

al Pit (m) Description													
understand Length of Sample (mm) 450 Depth from top of sample (mm) 50 Condition of Sample: Undisturbed Orientation: Vertical Length of Specimen (mm) 102.7 Moisture Content (%) 17 Buk Density (Mg/m ³) 2.16 Dry Density (Mg/m ³) 1.85 Rate of Strain (%/min) 1.90 gg Strain at Failure (%) 170 Motor Inted Compressive Strength (kPa) 170	rehole / rial Pit	-	Sample				Desc	ription					
unumber of Specimen (mm) 450 Depth from top of sample (mm) 50 Condition of Sample: Undisturbed Orientation: Vertical Length of Specimen (mm) 210.4 Diameter of Specimen (mm) 102.7 Moisture Content (%) 17 Bulk Density (Mg/m³) 2.16 Dry Density (Mg/m³) 1.85 Rate of Strain (%/min) 1.90 strain at Failure (%) 17.6 Unconfined Compressive Strength (kPe) 170	3H224	9.00	U30	Firm brown sandy gravelly	CLAY								
Dry Density (Mg/m³) 1.85 0 5 10 15 20 25 Rate of Strain (%/min) 1.90 1.90 Strain % S			1				250					 	
Dry Density (Mg/m³) 1.85 0 5 10 15 20 25 Rate of Strain (%/min) 1.90 1.90 Strain % S)a)	225	-					
Dry Density (Mg/m³) 1.85 0 5 10 15 20 25 Rate of Strain (%/min) 1.90 1.90 Strain % S						(ki	200	-					
Dry Density (Mg/m³) 1.85 0 5 10 15 20 25 Rate of Strain (%/min) 1.90 1.90 Strain % S			l ength	of Sample (mm)	450	ngt) 175	-				_	
Dry Density (Mg/m³) 1.85 Rate of Strain (%/min) 1.90 Strain at Failure (%) 17.6 Unconfined Compressive Strength (kPa) 170	cimen			-		Stre	150	-					
Dry Density (Mg/m³) 1.85 0 5 10 15 20 25 Rate of Strain (%/min) 1.90 1.90 Strain % S	al Spe				urbed	ve ve	125	-					
Dry Density (Mg/m³) 1.85 0 5 10 15 20 25 Rate of Strain (%/min) 1.90 1.90 Strain % S	lniti		Orienta	tion: Verti	cal	ssi	100	-					
Dry Density (Mg/m³) 1.85 Rate of Strain (%/min) 1.90 Strain at Failure (%) 17.6 Unconfined Compressive Strength (kPa) 170	Length	of Specim	en (mm)		210.4	Ipre	• 75	- /	/				
Dry Density (Mg/m³) 1.85 Rate of Strain (%/min) 1.90 Strain at Failure (%) 17.6 Unconfined Compressive Strength (kPa) 170	Diamet	er of Spec	imen (mm)		102.7	ло	50						
Dry Density (Mg/m³) 1.85 Rate of Strain (%/min) 1.90 Strain at Failure (%) 17.6 Unconfined Compressive Strength (kPa) 170	Moistur	re Content	(%)		17								
Dry Density (Mg/m³) 1.85 Rate of Strain (%/min) 1.90 Strain at Failure (%) 17.6 Unconfined Compressive Strength (kPa) 170	Bulk De	ensity (Mg	/m³)		2.16	Axia	25	7					
Strain at Failure (%) 17.6 Unconfined Compressive Strength (kPa) 170	Dry Der	nsity (Mg/r	n³)		1.85	4	0	0	5	10	15	 20	
strain at Failure (%)17.6Unconfined Compressive Strength (kPa)170Mode of Failure (B/P/C)Plastic	Rate of	Strain (%/	min)		1.90					Stra	in %		
Unconfined Compressive Strength (kPa) 170 Mode of Failure (B/P/C) Plastic	<u>와</u> Str	ain at Failı	ure (%)		17.6								
Mode of Failure (B/P/C) Plastic	t Resi	confined C	Compressiv	e Strength (kPa)	170								
	Mo Hes	de of Failu	ire (B/P/C)		Plastic								

Method of Preparation : BS 1377:PT1:1990:7.4.2 Moisture Content, BS 1377:PT1:1990:8.3 Preparation of undisturbed samples for testing or BS 1377:PT1:1990 :7.7.5.2 Preparation of disturbed samples for testing. : BS 1377:PT2:1990:3.2 Determination of moisture content, BS 1377:PT2:1990:7.2 Determination of density by linear measurement BS 1377:PT7:1990:7.2 Determination of unconfined compressive Strength using the Load Frame Method Method of Test

Remarks

:

Client : Lancashire County Council

Laboratory Test Report - 41455E

Job Number

41455E

Page 235 / 457

DETERMINATION OF MOISTURE CONTENT, DENSITY AND UNCONFINED COMPRESSIVE STRENGTH (LOAD FRAME METHOD)

rehol rial P		Depth (m)	Sample				Descr	iption					
3H224	1	10.00	U33	Firm brown sandy gravell	y CLAY								
							250 ⁻						
						Pa)	225	-					
						کا الح	200	-					
_			Length	of Sample (mm)	450	Axial Compressive Strength (kPa)) 175 ⁻	-					
Initial Specimen			Depth fr	om top of sample (mm)	50	Stre	150 ⁻	-					
ial Spo			Conditio	on of Sample: Undist	turbed	ve Ve	125	-	/				
Init			Orientat	tion: Ver	tical	ssi	100	-					
Len	gth o	f Specim	en (mm)		209.6	bre	• 75 ·						
Diar	neter	of Speci	men (mm)		102.3	Son C	50 ⁻						
Moi	sture	Content	(%)		15	al C	00						
Bull	< Der	sity (Mg/	m³)		2.21	Axia	25	γ					
Dry	Dens	sity (Mg/n	1 ³)		1.92		0 -	0	5	10	15	20	2
Rate	e of S	Strain (%/I	min)		1.91					Stra	in %		
ults	Strai	n at Failu	ıre (%)		19.1								
t Results	Unco	onfined C	ompressive	e Strength (kPa)	196								
Test	Mod	e of Failu	re (B/P/C)		Compound								

Method of Prepara	tion: BS 1377:PT1:1990:7.4.2 Moisture Content, BS 1377:PT1:1990:8.3 Preparation of undisturbed samples for testing or BS 1377:PT1:1990 :7.7.5.2 Preparation of disturbed samples for testing.
Method of Test	: BS 1377:PT2:1990:3.2 Determination of moisture content, BS 1377:PT2:1990:7.2 Determination of density by linear measurement BS 1377:PT7:1990:7.2 Determination of unconfined compressive Strength using the Load Frame Method
Remarks	:

Client : Lancashire County Council

Laboratory Test Report - 41455E

Job Number

41455E

Page 236 / 457

DETERMINATION OF MOISTURE CONTENT, DENSITY AND UNCONFINED COMPRESSIVE STRENGTH (LOAD FRAME METHOD)

rehole ial Pit	•	Sample			Desc	iption					
3H224	11.00	U36	Stiff brown sandy gravelly (CLAY							
					250 225 200	-					
men			of Sample (mm)	450	Axial Compressive Strength (kPa) Axial Compressive Strength (kPa) 125 100 25 2 2 2 2 2 2 2 2 2 2 2 2 2	-					
Initial Specimen		Conditio	rom top of sample (mm) on of Sample: Undistu		S 125	_					
	th of Specim	Orienta	tion: Vertic	209.5	100 Les						
	eter of Speci			102.5	duo 75						
Moist	ture Content	(%)		24	5 0 1						
Bulk	Density (Mg/	m³)		2.02	7Xia	1					
Dry D	ensity (Mg/n	1 ³)		1.63	0	0	5	10	15	20	
Rate	of Strain (%/	min)		1.91				Stra	in %		
Results	Strain at Failu	ıre (%)		19.1							
r Res	Inconfined C	ompressiv	e Strength (kPa)	156							
Test	lode of Failu	re (B/P/C)		Plastic							

Method of Preparation : BS 1377:PT1:1990:7.4.2 Moisture Content, BS 1377:PT1:1990:8.3 Preparation of undisturbed samples for testing or BS 1377:PT1:1990 :7.7.5.2 Preparation of disturbed samples for testing. Method of Test

:

Remarks

Client : Lancashire County Council

Laboratory Test Report - 41455E

Job Number

41455E

Page 237 / 457

DETERMINATION OF MOISTURE CONTENT, DENSITY AND UNCONFINED COMPRESSIVE STRENGTH (LOAD FRAME METHOD)

rehol rial Pi	· ·	Sample		Description									
3H224	15.50	U45	Stiff brown CLAY										
						1150)						
					(ed	103	5			\frown			
					, (kl	920	-		/				
_		Length	of Sample (mm)	3		8 05	-						
Initial Specimen		Depth f	rom top of sample (mm)		Stre	Axial Compressive Strength (kPa) 920 - 900	-	/					
		Conditio	on of Sample: Undis	sturbed	ev ev		-						
lnit		Orienta	tion: Ve	ertical		460	-						
Lenç	th of Specin	nen (mm)		209.	Dre	3 45	- /	/					
Dian	neter of Spec	imen (mm)		102.	- mo	230							
Mois	ture Content	: (%)		14									
Bulk	Density (Mg	/m³)		2.25) Xis	115]/						
Dry	Density (Mg/ı	n³)		1.97		0	0		5	10	15	20	2
Rate of Strain (%/min)			1.91						Stra	in %			
ults	Strain at Fail	ure (%)		10									
Test Results	Unconfined (Compressiv	e Strength (kPa)	105									
ក្តី អំ Mode of Failure (B/P/C)		ıre (B/P/C)		Brittl	1								

Method of Preparation	: BS 1377:PT1:1990:7.4.2 Moisture Content, BS 1377:PT1:1990:8.3 Preparation of undisturbed samples for testing or BS 1377:PT1:1990 :7.7.5.2 Preparation of disturbed samples for testing.
Method of Test	: BS 1377:PT2:1990:3.2 Determination of moisture content, BS 1377:PT2:1990:7.2 Determination of density by linear measurement BS 1377:PT7:1990:7.2 Determination of unconfined compressive Strength using the Load Frame Method

Remarks

:

Client : Lancashire County Council

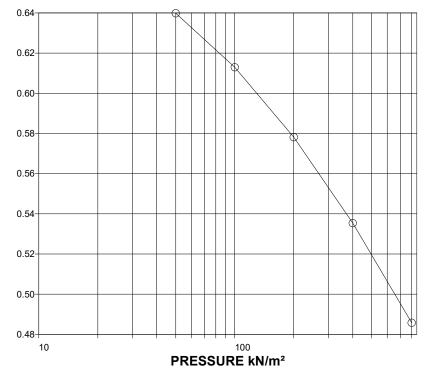
Laboratory Test Report - 41455E

Job Number

41455E

Page

405 / 457


ONE-DIMENSIONAL CONSOLIDATION TEST

Borehole / Trial Pit	Depth (m)	Sample	Description
BH224	8.00	U27	Firm brown silty CLAY

	ecimen		Length of Sample (mm)		450
			Depth from top of sample (mm)		50
	ial Sp		Condition of Sample:	Undisturbed	
	Init		Orientation:	Vertical	

Diameter (mm)	75.08
Particle Density (Mg/m³)	2.65 (Assumed)
Swelling Pressure (kN/m²)	
Lab Temp (°C)	21

	Inital	Final	o
Height (mm)	19.03	16.78	RATIO
Wet Weight (g)	169.67	163.47	Q
Moisture Content (%)	27	24	VOID
Bulk Density (Mg/m³)	2.01	2.20	
Dry Density (Mg/m³)	1.58	1.78	
Void Ratio	0.677	0.489	
Degree of Saturation (%)	105.69	129.19	
Void Ratio	0.677	0.489	

Μv

m²/MN

Cv

m²/year

Void

Ratio

Pressure

kN/m²

Pressure Μv Cv Void kN/m² m²/MN m²/year Ratio 50 0.45 1.4 0.640 100 0.33 4.5 0.613 200 0.22 3.0 0.578 400 0.14 2.7 0.535 800 0.08 2.7 0.486

Method of Preparation: BS 1377:PART 5:1990:3.3, 3.4

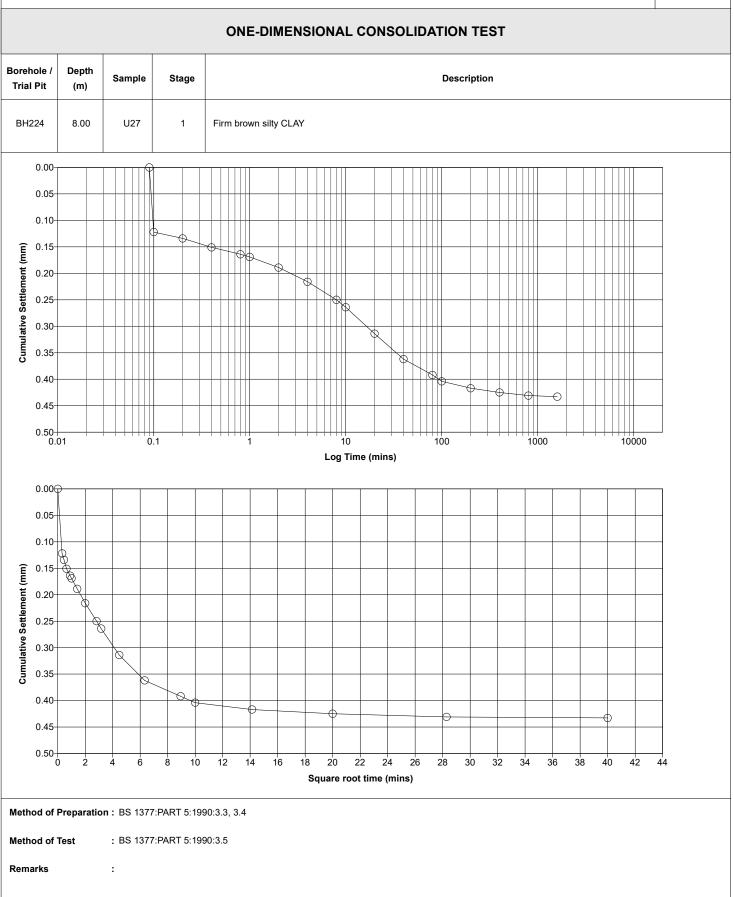
:

Method of Test

: BS 1377:PART 5:1990:3.5

Remarks

Site


Client

Preston Western Distributor Road, Preston
 Lancashire County Council

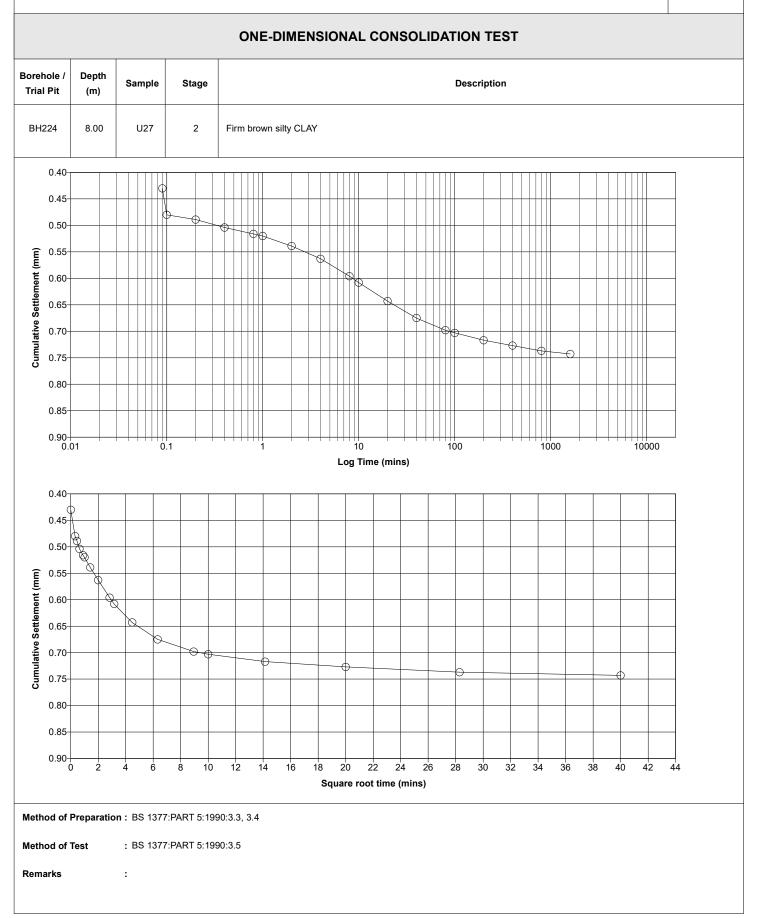
Job Number 41455E

Page

406 / 457

Site

Client

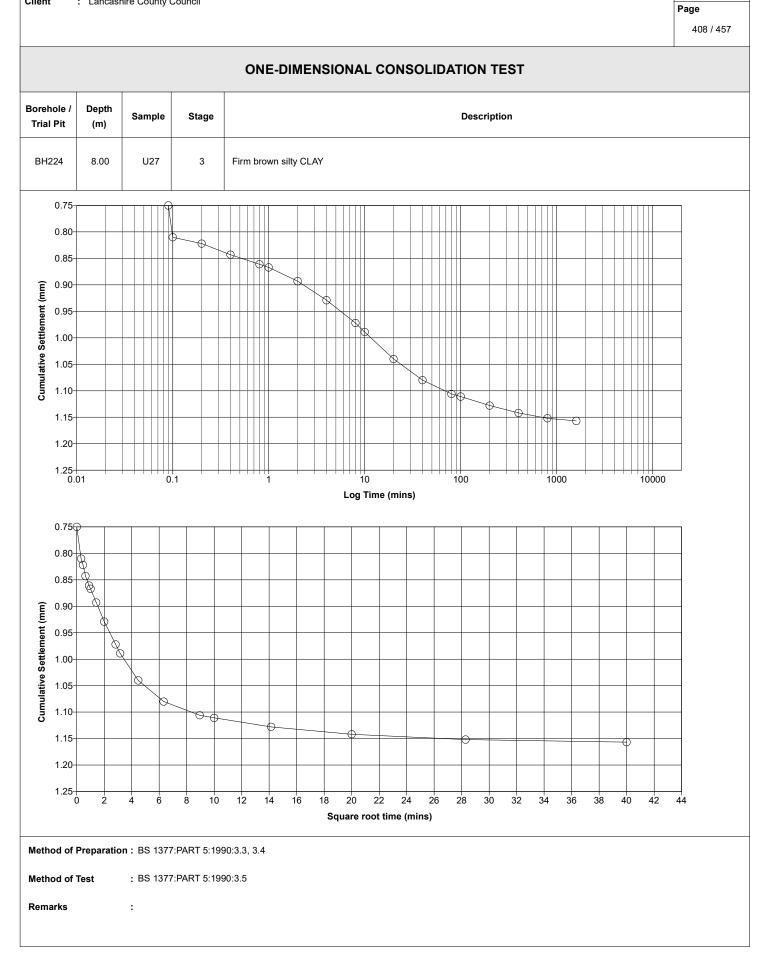

: Lancashire County Council

: Preston Western Distributor Road, Preston

Job Number 41455E

Page

407 / 457


Job Number

41455E

Site

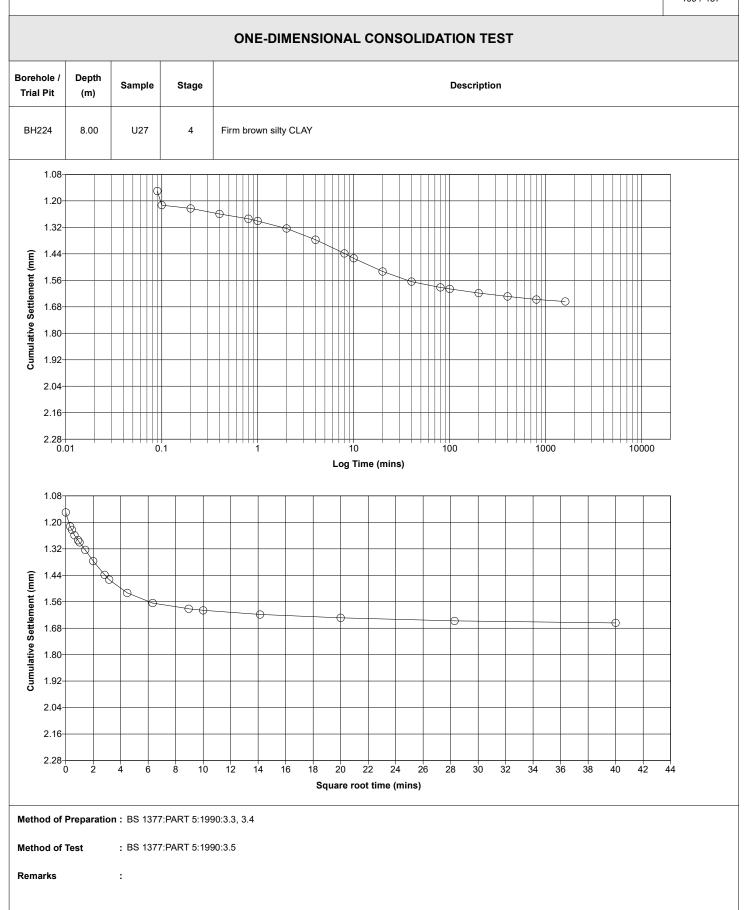
: Preston Western Distributor Road, Preston

Client : Lancashire County Council

Site

Client

: Lancashire County Council


: Preston Western Distributor Road, Preston

Job Number

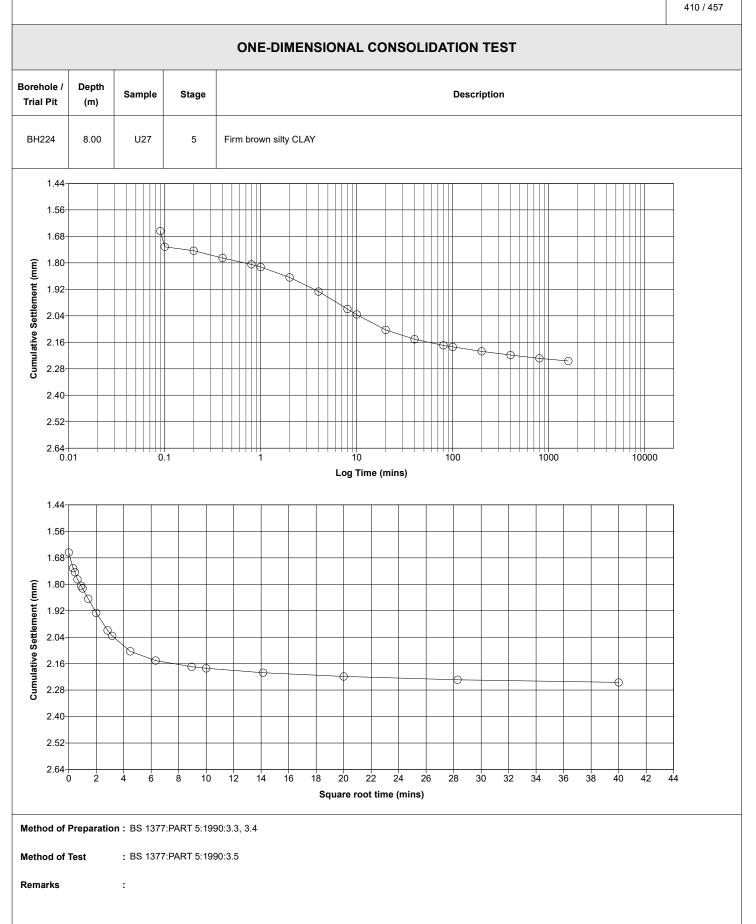
41455E

Page

409 / 457

Site

Client


: Lancashire County Council

: Preston Western Distributor Road, Preston

Job Number 41455E

Page

-

Soil

Analysed as Soil

Soil Suite 1

			SA	L Reference	413640 019	413640 020	413640 021	413640 022	413640 023	413640 024	413640 025	413640 026
		Custon	ner Sampl	e Reference	BH222	BH224	BH45	BH71	BH73	BH76	BH85	BH92
			D	ate Sampled	14-JUL- 2014	14-JUL- 2014	07-JUL- 2014	21-JUL- 2014	21-JUL- 2014	18-JUL- 2014	11-JUL- 2014	09-JUL- 2014
				Depth	0.50	0.50	0.50	0.25	0.50	0.50	0.90	0.60
				Туре	Clay							
Determinand	Method	Test Sample	LOD	Units		-	-					-
Arsenic	T6	M40	2	mg/kg	11	8	9	10	6	5	4	9
Boron (water-soluble)	T6	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Cadmium	T6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Chromium	T6	M40	1	mg/kg	31	27	29	30	34	29	30	30
Copper	T6	M40	1	mg/kg	17	15	18	21	19	17	18	18
Lead	T6	M40	1	mg/kg	18	11	11	34	13	12	12	12
Mercury	T6	M40	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
Nickel	T6	M40	1	mg/kg	22	25	30	21	35	27	30	33
Selenium	T6	M40	3	mg/kg	<3	<3	<3	<3	<3	<3	<3	<3
Zinc	T6	M40	1	mg/kg	41	39	43	54	50	45	47	54
Mass Fraction of organic carbon	T286	M40			0.0086	0.0038	0.0026	0.026	0.0053	0.018	0.0055	0.0022
pН	T7	AR			6.8	7.4	8.1	7.1	7.4	6.9	7.4	7.6
SO4(Total)	T6	M40	0.01	%	0.03	0.02	0.02	0.12	0.02	0.11	0.04	0.01
Sulphide	T546	AR	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1

SAL Reference: 413640 Project Site: Western Distributor Road, Preston Customer Reference: 41455

Soil

Analysed as Soil

Miscellaneous

		23	SA	L Reference	413640 001	413640 002	413640 003	413640 004	413640 005	413640 006	413640 007	413640 008	413640 009
		Custon	ner Sampl	e Reference	BH10	BH119	BH121	BH121	BH121	BH125	BH127	BH128	BH128
			Da	ate Sampled	16-JUL-2014	18-JUL-2014	17-JUL-2017	17-JUL-2017	22-JUL-2014	21-JUL-2014	16-JUL-2014	16-JUL-2014	15-JUL-2014
				Depth	0.25	0.50	1.00	3.00	5.00	0.25	0.50	1.80	3.80
				Туре	Topsoil	Sandy Soil	Clay	Clay	Clay	Topsoil	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units									
Asbestos ID	T27	AR			N.D.								

SAL R	eference:	413640											
Pro	ject Site:	Western D	Distributor I	Road, Prestor	ı								
Customer R	eference:	41455											
Soil Miscellaneous		Analysed	as Soil										
			SA	Reference	413640 010	413640 011	413640 012	413640 013	413640 014	413640 015	413640 016	413640 017	413640 018
		Custon	ner Sampl	e Reference	BH223	BH49	BH79	BH101	BH115	BH117	BH13	BH210	BH216
			Da	te Sampled	25-JUL-2014	17-JUL-2014	07-JUL-2014	11-JUL-2014	15-JUL-2014	04-JUL-2014	14-JUL-2014	14-JUL-2014	14-JUL-2014
				Depth	0.50	0.50	0.50	0.50	0.25	0.80	0.50	1.00	0.50
				Туре	Clay								
Determinand	Method	Test Sample	LOD	Units									
Asbestos ID	T27	AR			N.D.								

		440640		. <u> </u>									1
	Reference:											1	1
	•		Jistributor F	Road, Preston	1							I	
Customer	Reference:	41455										I	
Soil		Analysed	as Soil									I	
Aiscellaneous		Analysed	as son									1	1
liscellaneous												1	
			SA	L Reference	413640 019	413640 020	413640 021	413640 022	413640 023	413640 024	413640 025	413640 026	
		Custor		le Reference	BH222	BH224	BH45	BH71	BH73	BH76	BH85	BH92	1
							1 1						
				Depth	0.50	0.50	0.50	0.25	0.50	0.50	0.90	0.60	1
				Туре		Clay	Clay	Clay	Clay	Clay	Clay	Clay	
				 									1
Determinand	Method	Test Sample	LOD	Units	ĺ							1	1
Asbestos ID	T27	AR		[_]	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	
	<u> </u>					· · · · · ·	<u>,</u>	·		<u> </u>	·	<u>ــــــــــــــــــــــــــــــــــــ</u>	1
							<u> </u>	<u> </u>					
	Reference:												
	-		Jistributor F	Road, Preston	1								
Customer	Reference:	41455											
Soil		Analysed	as Soil										
ICERTS Preparation													
							1					1	
				L Reference		413640 002	413640 003	413640 004	413640 005	413640 006	413640 007	413640 008	413640 00
		Custon		le Reference	BH10	BH119	BH121	BH121	BH121	BH125	BH127	BH128	BH128
			Da				17-JUL-2017	1 1					-
				Depth	0.25	0.50	1.00	3.00	5.00	0.25	0.50	1.80	3.80
				Туре	Topsoil	Sandy Soil	Clay	Clay	Clay	Topsoil	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units									
Noisture @ 105 C	T162	AR	0.1	%	12	15	15	20	14	18	14	15	16
				1000						E.			
P	Reference: Project Site: Reference:	: Western D		Road, Preston									
				D-ference	110040.010	110040 011	110040 012	110040 013	110040 014	110040 015	10040.016	10040.017	413640 01
		Custor											
		Custon										1	BH216
			Da										
													0.50
				I ype	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay
	T., '	Teet '		Units			1						
Determinand	Method	Test Sample	LOD	·	Ļ						1 *	1 *	1 10
ICERTS Preparation		Custon	SAL mer Sample Da	Depth Type	BH223 25-JUL-2014 0.50	413640 011 BH49 17-JUL-2014 0.50 Clay	413640 012 BH79 07-JUL-2014 0.50 Clay	413640 013 BH101 11-JUL-2014 0.50 Clay	413640 014 BH115 15-JUL-2014 0.25 Clay	0.80 Clay	0.50 Clay	1.00 Clay	В 14-Ј
		Sample	+ +	<u></u>	·								1 40
Determinand Moisture @ 105 C	T162	Sample AR	0.1	%	13	15	11	13	15	15	19	12	18

			SA	L Reference	413640 019	413640 020	413640 021	413640 022	413640 023	413640 024	413640 025	413640 026
		Custon	ner Sampl	e Reference	BH222	BH224	BH45	BH71	BH73	BH76	BH85	BH92
			Da	ate Sampled	14-JUL-2014	14-JUL-2014	07-JUL-2014	21-JUL-2014	21-JUL-2014	18-JUL-2014	11-JUL-2014	09-JUL-2014
				Depth	0.50	0.50	0.50	0.25	0.50	0.50	0.90	0.60
				Туре	Clay							
Determinand	Method	Test Sample	LOD	Units								
Moisture @ 105 C	T162	AR	0.1	%	13	13	<0.1	17	14	26	19	16

Soil

Analysed as Soil

PAH US EPA 16 (B and K split)

			SA	L Reference	413640 001	413640 002	413640 003	413640 004	413640 005	413640 006	413640 007	413640 008	413640 009
		Custon	ner Sampl	e Reference	BH10	BH119	BH121	BH121	BH121	BH125	BH127	BH128	BH128
			Da	ate Sampled	16-JUL- 2014	18-JUL- 2014	17-JUL- 2017	17-JUL- 2017	22-JUL- 2014	21-JUL- 2014	16-JUL- 2014	16-JUL- 2014	15-JUL- 2014
				Depth	0.25	0.50	1.00	3.00	5.00	0.25	0.50	1.80	3.80
				Туре	Topsoil	Sandy Soil	Clay	Clay	Clay	Topsoil	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units									
Naphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.4	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.6	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	1.3	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	7.3	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	1.9	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	7.3	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	5.8	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	2.6	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	2.7	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	3.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	1.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	2.4	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	1.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	0.3	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	1.2	<0.1	<0.1	<0.1	<0.1	<0.1
PAH(total)	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	40	<0.1	<0.1	<0.1	<0.1	<0.1

SAL Reference: 413640

Project Site: Western Distributor Road, Preston

Customer Reference: 41455

Soil

Analysed as Soil

PAH US EPA 16 (B and K split)

			SA	L Reference	413640 010	413640 011	413640 012	413640 013	413640 014	413640 015	413640 016	413640 017	413640 018
		Custon	ner Sampl	e Reference	BH223	BH49	BH79	BH101	BH115	BH117	BH13	BH210	BH216
			Da	ate Sampled	25-JUL- 2014	17-JUL- 2014	07-JUL- 2014	11-JUL- 2014	15-JUL- 2014	04-JUL- 2014	14-JUL- 2014	14-JUL- 2014	14-JUL- 2014
				Depth	0.50	0.50	0.50	0.50	0.25	0.80	0.50	1.00	0.50
				Туре	Clay								
Determinand	Method	Test Sample	LOD	Units									
Naphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PAH(total)	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

Soil

Analysed as Soil

PAH US EPA 16 (B and K split)

			SA	L Reference	413640 019	413640 020	413640 021	413640 022	413640 023	413640 024	413640 025	413640 026
		Custor	ner Sampl	e Reference	BH222	BH224	BH45	BH71	BH73	BH76	BH85	BH92
			Da	ate Sampled	14-JUL- 2014	14-JUL- 2014	07-JUL- 2014	21-JUL- 2014	21-JUL- 2014	18-JUL- 2014	11-JUL- 2014	09-JUL- 2014
				Depth	0.50	0.50	0.50	0.25	0.50	0.50	0.90	0.60
				Туре	Clay							
Determinand	Method	Test Sample	LOD	Units							_	
Naphthalene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(k)fluoranthene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Indeno(123-cd)Pyrene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(ah)Anthracene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(ghi)Perylene	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
PAH(total)	T207	M105	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1

SAL Reference: 413640

Project Site: Western Distributor Road, Preston

Customer Reference: 41455

Soil

Analysed as Soil

Total Petroleum Hydrocarbons with Speciation

			SA	L Reference	413640 001	413640 002	413640 003	413640 004	413640 005	413640 006	413640 007	413640 008	413640 009
		Custor	ner Samp	le Reference	BH10	BH119	BH121	BH121	BH121	BH125	BH127	BH128	BH128
			D	ate Sampled	16-JUL-2014	18-JUL-2014	17-JUL-2017	17-JUL-2017	22-JUL-2014	21-JUL-2014	16-JUL-2014	16-JUL-2014	15-JUL-2014
				Depth	0.25	0.50	1.00	3.00	5.00	0.25	0.50	1.80	3.80
				Туре	Topsoil	Sandy Soil	Clay	Clay	Clay	Topsoil	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units									
TPH Speciation	T206	M105			N.D.	N.D.		Fraction Start CNo (56) 14 Fraction Peak CNo (56) 24 Fraction End CNo (56) 40 Heavy Mineral Range Organics (56)	N.D.	N.D.	N.D.	N.D.	N.D.

Soil

Analysed as Soil

Total Petroleum Hydrocarbons with Speciation

		-											
			SA	L Reference	413640 010	413640 011	413640 012	413640 013	413640 014	413640 015	413640 016	413640 017	413640 018
		Custon	ner Sampl	e Reference	BH223	BH49	BH79	BH101	BH115	BH117	BH13	BH210	BH216
			Da	ate Sampled	25-JUL-2014	17-JUL-2014	07-JUL-2014	11-JUL-2014	15-JUL-2014	04-JUL-2014	14-JUL-2014	14-JUL-2014	14-JUL-2014
				Depth	0.50	0.50	0.50	0.50	0.25	0.80	0.50	1.00	0.50
				Туре	Clay								
Determinand	Method	Test Sample	LOD	Units		_			_				_
TPH Speciation	T206	M105			N.D.								

SAL Reference: 413640

Project Site: Western Distributor Road, Preston

Customer Reference: 41455

Soil Analysed as Soil

			SA	L Reference	413640 019	413640 020	413640 021	413640 022	413640 023	413640 024	413640 025	413640 02
		Custor	ner Sampl	e Reference	BH222	BH224	BH45	BH71	BH73	BH76	BH85	BH92
			Da	ate Sampled	14-JUL-2014	14-JUL-2014	07-JUL-2014	21-JUL-2014	21-JUL-2014	18-JUL-2014	11-JUL-2014	09-JUL-20
				Depth	0.50	0.50	0.50	0.25	0.50	0.50	0.90	0.60
				Туре	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units				2010				
PH Speciation	T206	M105			Fraction Start CNo 14	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
					Fraction Peak CNo 28							
					Fraction End CNo 40					Dec.		
		- 2	2018		Heavy Mineral Range Organics		1.25		1			

Soil

Analysed as Soil

Total Petroleum Hydrocarbons CWG

			SA	Reference	413640 001	413640 002	413640 003	413640 004	413640 005	413640 006	413640 007	413640 008	413640 009
		Custor	ner Sampl	e Reference	BH10	BH119	BH121	BH121	BH121	BH125	BH127	BH128	BH128
			Da	ate Sampled	16-JUL- 2014	18-JUL- 2014	17-JUL- 2017	17-JUL- 2017	22-JUL- 2014	21-JUL- 2014	16-JUL- 2014	16-JUL- 2014	15-JUL- 2014
				Depth	0.25	0.50	1.00	3.00	5.00	0.25	0.50	1.80	3.80
				Туре	Topsoil	Sandy Soil	Clay	Clay	Clay	Topsoil	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units					_		_		
Benzene	T209	M105	10	µg/kg	⁽¹³⁾ <10								
Toluene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
EthylBenzene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
M/P Xylene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
O Xylene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
Methyl tert-Butyl Ether	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH (C5-C6 aliphatic)	T209	M105	0.100	mg/kg	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
TPH (C6-C8 aliphatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aliphatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C10-C12 aliphatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C12-C16 aliphatic)	T206	M105	2	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2
TPH (C16-C21 aliphatic)	T206	M105	1	mg/kg	<1	<1	<1	4	<1	<1	<1	<1	<1
TPH (C21-C35 aliphatic)	T206	M105	4	mg/kg	<4	<4	<4	26	<4	<4	<4	<4	<4
TPH (C6-C7 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C7-C8 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C10-C12 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C12-C16 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	1	<1	<1	<1	<1	<1
TPH (C16-C21 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	10	<1	<1	<1	<1	<1
TPH (C21-C35 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	14	<1	<1	<1	<1	<1

SAL Reference: 413640 Project Site: Western Distributor Road, Preston Customer Reference: 41455

Soil

Analysed as Soil

Total Petroleum Hydrocarbons CWG

			SA	L Reference	413640 010	413640 011	413640 012	413640 013	413640 014	413640 015	413640 016	413640 017	413640 018
		Custor	ner Sampl	e Reference	BH223	BH49	BH79	BH101	BH115	BH117	BH13	BH210	BH216
			Da	ate Sampled	25-JUL- 2014	17-JUL- 2014	07-JUL- 2014	11-JUL- 2014	15-JUL- 2014	04-JUL- 2014	14-JUL- 2014	14-JUL- 2014	14-JUL- 2014
				Depth	0.50	0.50	0.50	0.50	0.25	0.80	0.50	1.00	0.50
				Туре	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay	Clay
Determinand	Method	Test Sample	LOD	Units									
Benzene	T209	M105	10	µg/kg	⁽¹³⁾ <10	⁽¹³⁾ <10	(13) <10	(13) <10	⁽¹³⁾ <10	⁽¹³⁾ <10	⁽¹³⁾ <10	(13) <10	(13) <10
Toluene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
EthylBenzene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
M/P Xylene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
O Xylene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
Methyl tert-Butyl Ether	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10	<10
TPH (C5-C6 aliphatic)	T209	M105	0.100	mg/kg	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
TPH (C6-C8 aliphatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aliphatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C10-C12 aliphatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C12-C16 aliphatic)	T206	M105	2	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2	<2
TPH (C16-C21 aliphatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C21-C35 aliphatic)	T206	M105	4	mg/kg	<4	<4	<4	<4	<4	<4	<4	<4	<4
TPH (C6-C7 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C7-C8 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C10-C12 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C12-C16 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C16-C21 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C21-C35 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1	<1

Analysed as Soil

Total Petroleum Hydrocarbons CWG

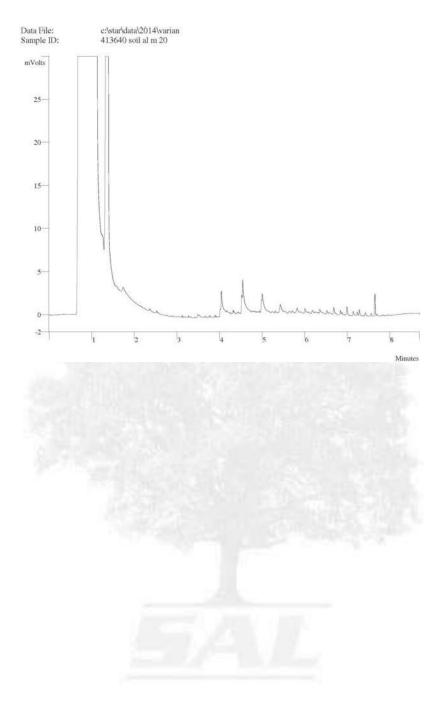
Soil

			SA	L Reference	413640 019	413640 020	413640 021	413640 022	413640 023	413640 024	413640 025	413640 026
		Custor	ner Sampl	e Reference	BH222	BH224	BH45	BH71	BH73	BH76	BH85	BH92
			Da	ate Sampled	14-JUL- 2014	14-JUL- 2014	07-JUL- 2014	21-JUL- 2014	21-JUL- 2014	18-JUL- 2014	11-JUL- 2014	09-JUL- 2014
				Depth	0.50	0.50	0.50	0.25	0.50	0.50	0.90	0.60
				Туре	Clay							
Determinand	Method	Test Sample	LOD	Units							_	
Benzene	T209	M105	10	µg/kg	⁽¹³⁾ <10							
Toluene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10
EthylBenzene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10
M/P Xylene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10
O Xylene	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10
Methyl tert-Butyl Ether	T209	M105	10	µg/kg	<10	<10	<10	<10	<10	<10	<10	<10
TPH (C5-C6 aliphatic)	T209	M105	0.100	mg/kg	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100	<0.100
TPH (C6-C8 aliphatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aliphatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C10-C12 aliphatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C12-C16 aliphatic)	T206	M105	2	mg/kg	<2	<2	<2	<2	<2	<2	<2	<2
TPH (C16-C21 aliphatic)	T206	M105	1	mg/kg	2	<1	<1	<1	<1	<1	<1	<1
TPH (C21-C35 aliphatic)	T206	M105	4	mg/kg	11	<4	<4	<4	<4	<4	<4	<4
TPH (C6-C7 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C7-C8 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C8-C10 aromatic)	T209	M105	0.10	mg/kg	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10
TPH (C10-C12 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C12-C16 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C16-C21 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1
TPH (C21-C35 aromatic)	T206	M105	1	mg/kg	<1	<1	<1	<1	<1	<1	<1	<1

Index to symbols used in 413640-2

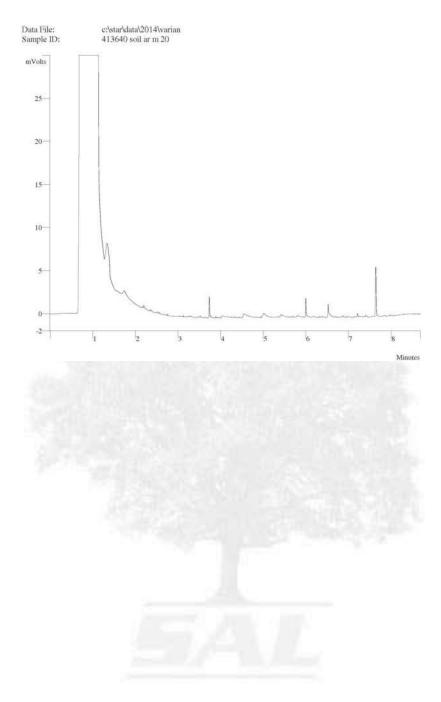
Value	Description
M40	Analysis conducted on sample assisted dried at no more than 40C. Results are reported on a dry weight basis.
AR	As Received
M105	Analysis conducted on an "as received" aliquot. Results are reported on a dry weight basis where moisture content was determined by assisted drying of sample at 105C
N.D.	Not Detected
56	Contains a series of Polyaromatic Hydrocarbons
13	Results have been blank corrected.
S	Analysis was subcontracted
М	Analysis is MCERTS accredited
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Notes


Asbestos was subcontracted to REC Asbestos
Sample 022 was submitted for GC/MS (Headspace) analysis were submitted in inappropriate containers. It is possible therefore that the results provided may be compromised.
These samples have been analysed exceeding recommended holding times. It is possible therefore that the results provided may be compromised.

Method Index

Value	Description
T207	GC/MS (MCERTS)
T27	PLM
T286	Calc TOC/100
T7	Probe
T6	ICP/OES
T162	Grav (1 Dec) (105 C)


413640-al-20.jpg

413640 020 - BH224

413640-ar-20.jpg

413640 020 - BH224

Site

: Preston Western Distributor Road, Preston

Client : Lancashire County Council

Laboratory Test Report - 41455I/1

Job Number 41455l

Page

3/5

DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY AND LIQUIDITY INDEX

Porebola/	Dorth		Natural	Natural	Sample 425µm	Passing	Liguid	Plastic	Plasticitv	ا المربية الله -		
Borehole/ Trial Pit	Depth (m)	Sample	/ Sieved	Moisture Content %	Percentage %	Moisture Content %	Liquid Limit %	Limit %	Plasticity Index %	Liquidity Index	Class	Description / Remarks
VS212	1.30	D10	Natural	14	95	14	25	13	12	0.08	CL	Brown silty CLAY
NS212	1.70	D11	Natural	14								Brown silty CLAY
WS212	2.00	D12	Natural	18								Brown silty CLAY
WS212	2.30	D15	Natural	15								Brown silty CLAY
WS212	2.70	D16	Natural	24								Brown silty CLAY
WS213	0.70	D8	Natural	15								Brown gravelly silty CLAY
WS213	1.00	D9	Natural	16								Brown gravelly silty CLAY
WS213	1.30	D12	Natural	13								Brown gravelly silty CLAY
WS213	1.70	D13	Natural	12								Brown gravelly silty CLAY
WS213	2.00	D14	Natural	13								Brown gravelly silty CLAY
WS213	2.30	D17	Natural	13								Brown gravelly silty CLAY
WS213	2.70	D18	Natural	14								Brown gravelly silty CLAY
WS213	3.00	D19	Natural	22								Brown gravelly silty CLAY
WS226	0.50	D5	Natural	14								Brown sandy gravelly CLAY
WS226	0.70	D7	Natural	14								Brown sandy gravelly CLAY
WS226	1.00	D8	Natural	12								Brown sandy gravelly CLAY
WS226	1.30	D11	Natural	11								Brown sandy gravelly CLAY
WS226	1.70	D12	Natural	12								Brown sandy gravelly CLAY
WS226	2.00	B13	Natural	14	98	14	29	15	14	-0.07	CL	Brown sandy gravelly CLAY
WS226	2.30	D15	Natural	14								Brown sandy gravelly CLAY
WS226	2.70	D16	Natural	14								Brown sandy gravelly CLAY
WS226	3.00	D17	Natural	15								Brown sandy gravelly CLAY
WS226	3.30	D18	Natural	16								Brown silty CLAY
WS226	3.70	D19	Natural	14								Brown silty CLAY
WS226	4.00	D20	Natural	15								Brown silty CLAY
WS226	4.50	D22	Natural	18								Brown silty CLAY
WS226	4.70	D23	Natural	17								Brown silty CLAY
WS226	5.00	D24	Natural	16								Brown silty CLAY
WS227	0.70	D7	Natural	34								Brown sandy gravelly CLAY
WS227	1.00	D8	Natural	28								Brown sandy gravelly CLAY
WS227	1.30	D11	Natural	23								Brown sandy gravelly CLAY
WS227	2.00	D12	Natural	18								Brown silty CLAY
WS227	2.30	D13	Natural	17								Brown sandy CLAY
WS227	2.70	D14	Natural	20								Brown silty gravelly CLAY
WS227	3.00	D15	Natural	15								Brown silty gravelly CLAY
WS227	3.30	D16	Natural	16								Brown silty gravelly CLAY

Method of Preparation : BS 1377:PART 1:1990:7.4 Preparation of samples for classification tests BS 1377:PART 2:1990:4.2 & 5.2 Sample preparations

Method of Test

: BS 1377:PART 2:1990:3.2 Determination of moisture content 4.3 Determination of the liquid limit 5.3 Determination of the plastic limit and plasticity index

IAN FARMER ASSOCIATES

Site

: Preston Western Distributor Road, Preston

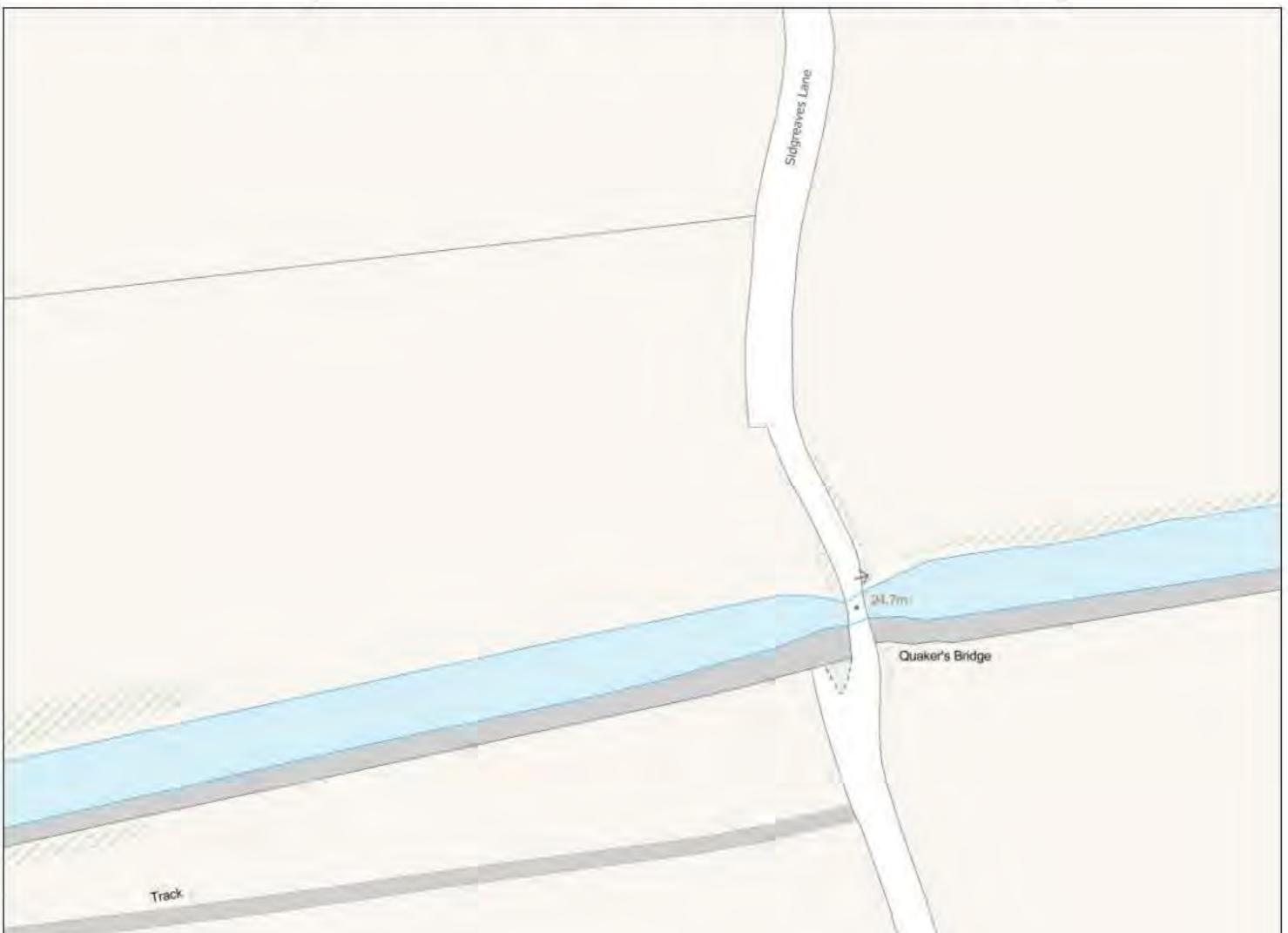
Client : Lancashire County Council

Laboratory	/ Test Re	port - 41	455I/1

Job Number 41455l

Page

4/5


DETERMINATION OF MOISTURE CONTENT, LIQUID LIMIT AND PLASTIC LIMIT AND DERIVATION OF PLASTICITY AND LIQUIDITY INDEX

Borehole/	Denth		Natural	Natural Moisture	Sample 425µm	Passing Sieve	Liquid	Plastic	Plasticity	Liquidity		
Trial Pit	Depth (m)	Sample	Sieved	Content %	Percentage %	Moisture Content %	Liquid Limit %	Limit %	Index %	Liquidity Index	Class	Description / Remarks
/S227	3.50	B17	Natural	17								Brown silty gravelly CLAY
/S227	3.70	D18	Natural	21								Brown silty gravelly CLAY
VS227	4.00	D19	Natural	16								Brown silty gravelly CLAY
VS227	4.30	D20	Natural	20								Brown silty CLAY
VS227	4.70	D21	Natural	17								Brown silty gravelly CLAY
VS227	5.00	D22	Natural	15								Brown gravelly silty CLAY
NS26	1.00	D7	Natural	20								Brown gravelly sandy CLAY
VS26	1.30	D9	Natural	18	100	18	34	17	17	0.06	CL	Brown silty CLAY
NS26	1.70	D10	Natural	22								Brown silty CLAY
VS26	2.00	D11	Natural	20								Brown silty CLAY
VS26	2.00	D12	Natural	24								Brown silty CLAY
VS26	2.30	D14	Natural	18								Brown silty CLAY
NS26	2.70	D15	Natural	23								Brown silty CLAY
VS26	3.00	D16	Natural	21								Brown silty CLAY
Method o												4.2 & 5.2 Sample preparations 5.3 Determination of the plastic limit and

Appendix D

Service information

Maps by email Plant Information Reply

IMPORTANT WARNING

Information regarding the location of BT apparatus is given for your assistance and is intended for general guidance only. No guarantee is given of its accuracy. It should not be relied upon in the event of excavations or other works being made near to BT apparatus which may exist at various depths and may deviate from the marked route.

openreach

13.97R.F

CLICK BEFORE YOU DIG

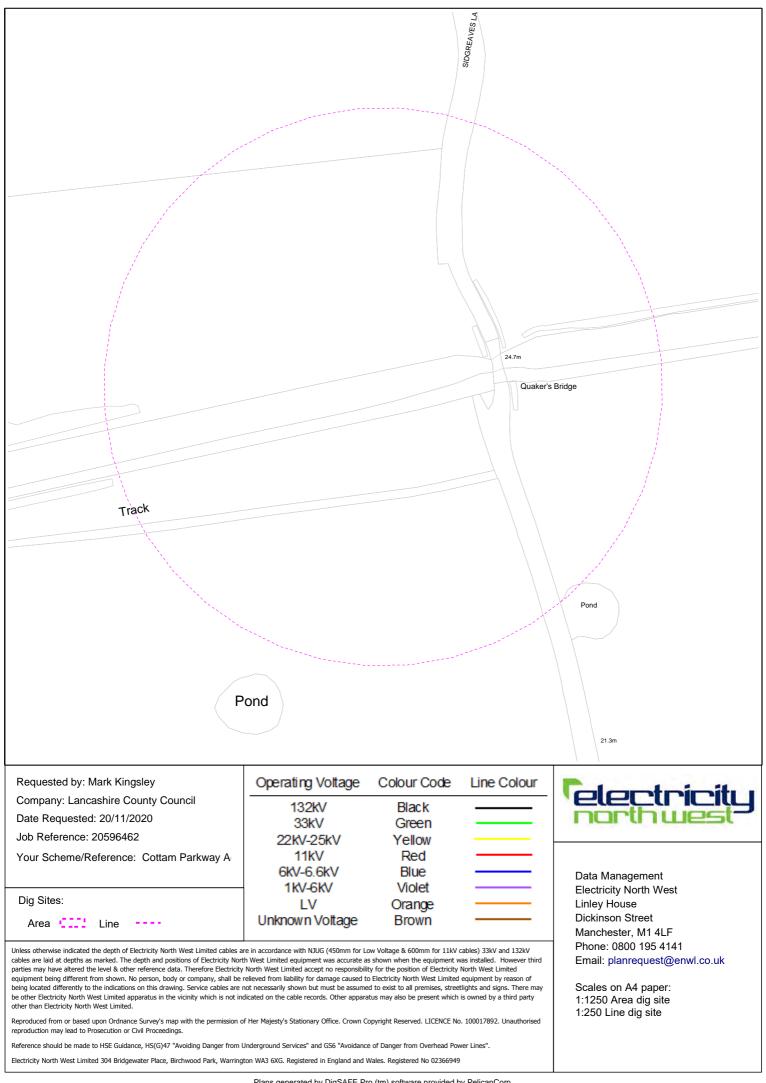
FOR PROFESSIONAL FREE ON SITE ASSISTANCE PRIOR TO COMMENCEMENT OF EXCAVATION WORKS INCLUDING LOCATE AND MARKING SERVICE

email cbyd@openreach.co.uk

ADVANCE NOTICE REQUIRED (Office hours: Monday - Friday 08.00 to 17.00) www.openreach.co.uk/cbyd

Accidents happen

If you do damage any Openreach equipment please let us know by calling 0800 023 2023 (opt 1 + opt 1) and we can get it fixed ASAP

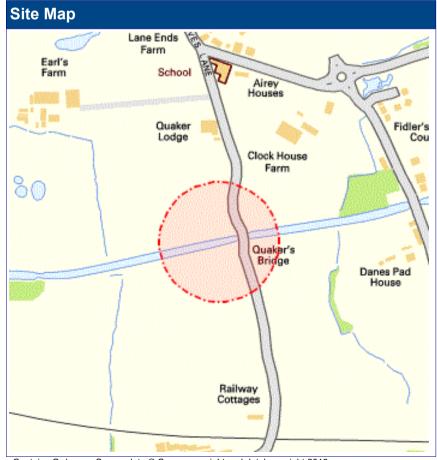

> Reproduced from the Ordnance Survey map by BT by permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationary Office (C) Crown Copyright British Telecommunications plc 100028040

KEY	TO BT SYM	BOLS	Change Of State	+	Hatchings	***				
	Planned	Live	Split Coupling	×	Built	1				
РСР			Duct Tee		Planned					
Pole	Q.	0	Building		Inferred	1				
Вох			Kiosk	ĸ	Duct	1				
Manhole			Other proposed plant is shown using dashed lines.							
	0	Û	BT Symbols not listed above may be disregarded. Existing BT Plant may not be recorded. Information valid at time of preparation. Maps are							
Cabinet					e of preparation	n. Maps are				
Cabinet			only valid fo			n. Maps are				
Cabinet	Pending Add	In Place			e of preparation ter the date of p	n. Maps are				
Cabinet Power Cable	Pending Add	In Place	only valid fo	or 90 days af	e of preparation ter the date of p	n. Maps are				

FERSE.

BT Ref : QLC04036J Map Reference : (centre) SD4902331622 Easting/Northing : (centre) 349023,431622 Issued : 20/11/2020 16:03:17

WARNING: IF PLANNED WORKS FALL INSIDE HATCHED AREA IT IS ESSENTIAL BEFORE PROCEEDING THAT YOU CONTACT THE NATIONAL NOTICE HANDLING CENTRE. PLEASE SEND E-MAIL TO: nnhc@openreach.co.uk



Enquirer									
Name	Mr Ma	r Mark Kingsley Phone 01772 536473							
Company	Lanca	ancashire County Council Mobile Not Supplied							
Address	PRES	Design & Construction County Hall PRESTON Lancashire PR1 8XJ							
Email	mark.	kingsley@lancashire.gov.uk							
Enquiry Details									
Scheme/Reference Cottam Parkway Access Bridge									
Enquiny type I will Exercise Work externor Exercise Nep Utility									

	, , ,						
Enquiry type	Initial Enquiry Work		Work category		Excavations Non Utility		
Start date	30/11/2020	Work type		Multiple excavations site			
End date	04/12/2020	Site size	Site size		200 metres diameter		
Searched location	XY= 349023, 431622	Work type	Work type buffer*		25 metres		
Confirmed location	349024 431621	I.					
Site Contact Name	Not Supplied		Site Ph	one No	Not Supplied		
Description of Works					I		

* The WORK TYPE BUFFER is a distance added to your search area based on the Work type you have chosen.

Asset Owners

Terms and Conditions. Please note that this enquiry is subject always to our standard terms and conditions available at www.linesearchbeforeudig.co.uk ("Terms of Use") and the disclaimer at the end of this document. Please note that in the event of any conflict or ambiguity between the terms of this Enquiry Confirmation and the Terms of Use, the Terms of Use shall take precedence.

Notes. Please ensure your contact details are correct and up to date on the system in case the LSBUD Members need to contact you.

Validity and search criteria. The results of this enquiry are based on the confirmed information you entered and are valid only as at the date of the enquiry. It is your responsibility to ensure that the Enquiry Details are correct, and LinesearchbeforeUdig accepts no responsibility for any errors or omissions in the Enquiry Details or any consequences thereof. LSBUD Members update their asset information on a regular basis so you are advised to consider this when undertaking any works. It is your responsibility to choose the period of time after which you need to resubmit any enquiry but the maximum time (after which your enquiry will no longer be dealt with by the LSBUD Helpdesk and LSBUD Members) is 28 days. If any details of the enquiry change, particularly including, but not limited to, the location of the work, then a further enquiry must be made.

Asset Owners & Responses. Please note the enquiry results include the following:

- 1. "LSBUD Members" who are asset owners who have registered their assets on the LSBUD service.
- 2. "Non LSBUD Members" are asset owners who have not registered their assets on the LSBUD service but LSBUD is aware of their existence. Please note that there could be other asset owners within your search area.

Below are three lists of asset owners:

- 1. LSBUD Members who have assets registered within your search area. ("Affected")
 - a.These LSBUD Members will either:
 - i. Ask for further information ("Email Additional Info" noted in status). The additional information includes: Site contact name and number, Location plan, Detailed plan (minimum scale 1:2500), Cross sectional drawings (if available), Work Specification.
 - ii. Respond directly to you ("Await Response"). In this response they may either send plans directly to you or ask for further information before being able to do so, particularly if any payments or authorisations are required.
- 2. LSBUD Members who do not have assets registered within your search area. ("Not Affected")
- 3. Non LSBUD Members who may have assets within your search area. Please note that this list is not exhaustive and all details are provided as a guide only. It is your responsibility to identify and consult with all asset owners before proceeding.

National Grid. Please note that the LSBUD service only contains information on National Grid's Gas above 7 bar asset, all National Grid Electricity Transmission assets and National Grid's Gas Distribution Limited above 2 bar asset.

For National Grid Gas Distribution Ltd below 2 bar asset information please go to www.beforeyoudig.nationalgrid.com

LSBUD Members who have assets registered on the LSBUD service within the vicinity of your search area.

List of affected LSBUD members								
Asset Owner	Phone/Email	Emergency Only	Status					
Electricity North West Limited	08001954141	08001954141	Await response					

LSBUD Members who do not have assets registered on the LSBUD service within the vicinity of your search area. Please be aware that LSBUD Members make regular changes to their assets and this list may vary for new enquiries in the same area.

	List of not affected LSBUD members	
AWE Pipeline	Balfour Beatty Investments Limited	BOC Limited (A Member of the Linde Group)
BP Exploration Operating Company Limited	BPA	Carrington Gas Pipeline
CATS Pipeline c/o Wood Group PSN	Cemex	Centrica Storage Ltd
Chrysaor Production (UK) Limited	CLH Pipeline System Ltd	CNG Services Ltd
Concept Solutions People Ltd	ConocoPhillips (UK) Teesside Operator Ltd	Diamond Transmission Corporation
DIO (MOD Abandoned Pipelines)	DIO (MOD Live Pipelines)	Drax Group
E.ON UK CHP Limited	EirGrid	ENI & Himor c/o Penspen Ltd
EnQuest NNS Limited	EP Langage Limited	ESP Utilities Group
ESSAR	Esso Petroleum Company Limited	Fulcrum Pipelines Limited
Gamma	Gas Networks Ireland (UK)	Gateshead Energy Company
Gigaclear Ltd	Gtt	Heathrow Airport LTD
Humbly Grove Energy	IGas Energy	INEOS FPS Pipelines
INEOS Manufacturing (Scotland and TSEP)	INOVYN Enterprises Limited	Intergen (Coryton Energy or Spalding Energy)
Jurassic Fibre Ltd	Mainline Pipelines Limited	Manchester Jetline Limited
Manx Cable Company	Marchwood Power Ltd (Gas Pipeline)	Melbourn Solar Limited
Murphy Utility Assets	National Grid Gas (Above 7 bar), National Grid Gas Distribution Limited (Above 2 bar) and National Grid Electricity Transmission	Northumbrian Water Group
NPower CHP Pipelines	NYnet Ltd	Oikos Storage Limited
Ørsted	Perenco UK Limited (Purbeck Southampton Pipeline)	Petroineos
Phillips 66	Portsmouth Water	Premier Transmission Ltd (SNIP)
Redundant Pipelines - LPDA	RWE - Great Yarmouth Pipeline (Bacton to Great Yarmouth Power Station)	RWEnpower (Little Barford and South Haven)
SABIC UK Petrochemicals	Scottish and Southern Electricity Networks	Scottish Power Generation
Seabank Power Ltd	SES Water	SGN
Shell	Shell NOP	SSE Enterprise Telecoms
SSE Generation Ltd	SSE Utility Solutions Limited	Tata Communications (c/o JSM Construction Ltd)
Total (Colnbrook & Colwick Pipelines)	Total Finaline Pipelines	Transmission Capital
UK Power Networks	Uniper UK Ltd	University of Cambridge Granta Backbone Network

Vattenfall	Veolia ES SELCHP Limited	Veolia ES Sheffield Ltd
Wales and West Utilities	West of Duddon Sands Transmission Ltd	Western Power Distribution
Westminster City Council	Zayo Group UK Ltd c/o JSM Group Ltd	

Enquiry Confirmation LSBUD Ref: 20596462

The following Non-LSBUD Members may have assets in your search area. It is YOUR RESPONSIBILITY to contact them before proceeding. Please be aware this list is not exhaustive and it is your responsibility to identify and contact all asset owners within your search area.

Non-LSBUD members (Asset owners not registered on LSBUD)					
Asset Owner	Preferred contact method	Phone	Status		
BT	https://www.swns.bt.com/pls/mbe/welcome.home	08000232023	Not Notified		
Cadent Gas	plantprotection@cadentgas.com	0800688588	Not Notified		
CenturyLink Communications UK Limited	plantenquiries@instalcom.co.uk	02087314613	Not Notified		
CityFibre	asset.team@cityfibre.com	033 3150 7282	Not Notified		
Colt	plantenquiries@catelecomuk.com	01227768427	Not Notified		
Energetics Electricity	plantenquiries@lastmile-uk.com	01698404646	Not Notified		
ENGIE	nrswa.uk@engie.com	01293 549944	Not Notified		
GTC	https://pe.gtc-uk.co.uk/PlantEnqMembership	01359240363	Not Notified		
KPN (c/-Instalcom)	kpn.plantenquiries@instalcom.co.uk	n/a	Not Notified		
Lancashire County Council	highways@lancashire.gov.uk	03001236701	Not Notified		
Mobile Broadband Network Limited	mbnlplantenquiries@turntown.com	01212 621 100	Not Notified		
Sky UK Limited	nrswa@sky.uk	02070323234	Not Notified		
Sota	SOTA.plantenquiries@instalcom.co.uk		Not Notified		
Teliasonera	check-network@teliacompany.com	0800526015	Not Notified		
United Utilities	WastewaterDeveloperServices@uuplc.co.uk	08707510101	Not Notified		
Utility assets Ltd	assetrecords@utilityassets.co.uk		Not Notified		
Verizon Business	osp-team@uk.verizonbusiness.com	01293611736	Not Notified		
Virgin Media	http://www.digdat.co.uk	08708883116	Not Notified		
Vodafone	osm.enquiries@atkinsglobal.com	01454662881	Not Notified		

Disclaimer

Please refer to LinesearchbeforeUdig's Terms of Use for full terms of use available at www.linesearchbeforeudig.co.uk

The results of this Enquiry are personal to the Enquirer and shall not be shared with or relied upon by any other party. The asset information on which the Enquiry results are based has been provided by LSBUD Members, therefore LinesearchbeforeUdig will provide no guarantee that such information is accurate or reliable nor does it monitor such asset information for accuracy and reliability going forward. There may also be asset owners which do not participate in the enquiry service operated by LinesearchbeforeUdig, including but not exclusively those set out above. Therefore,

LinesearchbeforeUdig cannot make any representation or give any guarantee or warranty as to the completeness of the information contained in the enquiry results or accept any responsibility for the accuracy of the mapping images used. LinesearchbeforeUdig and its employees, agents and consultants accept no liability (save that nothing in this Enquiry Confirmation excludes or limits our liability for death or personal injury arising from our negligence, or our fraud or fraudulent misrepresentation, or any other liability that cannot be excluded or limited by English law) arising in respect thereof or in any other way for errors or omissions including responsibility to any person by reason of negligence.

Celectricity

Conditions and information regarding electricity mains

These general conditions and precautions apply to the electricity distribution system of Electricity North West Limited.

Please ensure that a copy of these conditions is passed to your representative and contractor on site.

- There may be other Electricity North West Limited apparatus in the vicinity, which is not indicated on the cable records. Other apparatus may also be present which a third party owns other than Electricity North West Limited
- Before any machines are used all of Electricity North West's underground apparatus should be located by manual excavation taking the appropriate safety precautions in accordance with the Health and Safety Executive Guidance note HS(G)47 "Avoiding danger from underground services". This contains advice to site personnel when working near underground services.

Underground services, particularly electricity and gas, can be dangerous. Damage to electricity cables can cause a dangerous flash, leading to severe burns or even death. Gas leaks can cause fire or explosion.

Damage can result from excavation or penetration of the ground, e.g. by a road pin.

Underground services may be found in roads, footpaths and on sites. Always assume that they are present. Treat any services found anywhere as live.

Accidents have happened because people have mistaken one service for another, e.g. black plastic covered electricity cables look like black plastic water pipes and cast iron gas and water mains look alike. Check before you act.

- 3. Before starting work you must:
 - Make sure you have plans of the underground services in the area. This may not always be possible for emergency or unforeseen works.
 Remember that service connection cables and pipes from the main to building or streetlight may not be shown.
 - Use a cable and pipe locator to trace electricity cables and metal pipes.
 - Look for signs of service connection cables or pipes, e.g. a gas meter or service connection entry into a house or a streetlight.
 - Hand dig trial holes (as many as necessary) to confirm the position of services in close proximity to the area of work.

- 4. When you start work:
 - Hand dig near buried services whenever possible.
 Spades and shovels are safer than picks, pins or forks.
 - Remember that cables may be embedded in concrete. Electricity cables embedded in concrete must either be made dead before the concrete is broken out or another safe way of working agreed with the cable owner.
 - Watch out for signs of services as work continues.
 - Report damage to a cable, pipe or pipe coating however slight.
 - Do not use hand held power tools within 0.5m of he marked position of an electricity cable, unless this is impracticable and the line of the cable has been identified by plans and positively confirmed by a locator.
 - Do not use hand held power tools directly over the marked line of cable unless:
 - a) You have already found the cable at that position by careful hand digging beneath the surface and it is at a safe depth (at least 300mm) below the bottom of the surface to be broken, or
 - b) Physical means have been used to prevent the tool striking it.
 - If an excavator is used near an electricity cable keep everyone clear of the bucket while it is digging.
 Buckets should not be used near cable – hand dig.
 - Do not use exposed services as a convenient step or handhold.
 - Do not handle or attempt to alter the position of an exposed service.
 - Do not install plant close to an existing service.
 - Do not build existing services into a manhole or other structure or encase them in concrete.

Would you also ensure that all site operators have this information and if any electrical apparatus is damaged, they/you should contact Electricity North West Limited fault desk on **0800 195 4141 (option 1)**

5. Overhead lines are not necessarily shown on the Electricity North West Limited cable records but may be present. In the event of work being carried out adjacent to overhead lines (including access, storage etc.) please always ensure strict adherence to the requirements of the Health and Safety Executive's Document GS6 "Avoidance of Danger from Overhead Electric Lines".

Extreme personal danger can result from contact, or near contact, with live conductors or overhead lines.

Treat all overhead lines and other electrical apparatus as live. If in doubt, get advice.

- 6. Electricity North West Limited must be consulted if work is to take place within 15 metres of overhead lines on steel towers or 9 metres of overhead lines on wood, concrete or steel pylons. (All distances should be measure at ground level from a position estimated by eye to be vertically under the outermost conductor at a tower or pole position) Any person involved in work in the vicinity of overhead lines should:
 - Understand and follow the instructions given on safe working areas and methods of work.
 - Make sure that warning notices are in the cabs of machines working in the vicinity of an overhead line.
 - Make sure that barriers and warning notices are erected as required.
 - Not tip soil or stack material underneath overhead lines as this may reduce the clearance to an unsafe distance.
 - Make sure when handling or using platforms, scaffold, poles, piping, ladders, hand tools etc., that they are kept at a safe distance from overhead lines.
 - Not steady a suspended load, skip, hoist wire, slings etc., unless satisfied that there isn't any danger from overhead lines.
 - Remember that when mobile plant, such as a crane or excavator, is operating near overhead lines, the raising or slewing of the jib may introduce danger.
 - Always keep overhead lines in view when manoeuvring mobile plant.
 - Never operate a machine unless carefully guided by an experienced banksman.
 - Not approach or touch any broken or fallen conductors or any plant in contact with an overhead line before Electricity North West Limited confirms that conditions are safe. Warn others to keep well clear.

Machine operators should note that: if a machine comes into contact with an overhead line and cannot be disentangled by backing off, remain seated in the cab and warn others to keep clear of the machine until Electricity North West Limited confirms that conditions are safe. If it is essential to leave the machine while it is in contact with the overhead line, for example if it catches fire, jump well clear – and **do not** attempt to climb down in the normal way nor touch any part of the machine when on the ground.

- 7. Electricity North West Limited provides approximate locations of its electricity mains or apparatus according to its records but these records are not necessarily accurate or complete and do not always show the position of private cables from mains to properties. No person or company shall be relieved from liability for any damage caused by reason of the actual positions and/or depths being different from those indicated.
- Care should be taken when excavating near cables. Known road crossings are highlighted on the enclosed plans. Should any cable, or Electricity North West Limited apparatus indicated on the attached plans, be affected by your proposals please contact us as follows:

Data Management Linley House Dickinson St Manchester M1 4LF

Telephone: 0800 195 4141 (option 2)

Details of diversion costs, if any, will be provided on request once your firm proposals have been submitted.

9. Please note that service cables may be affected by some of the works being carried out on site.

If any services do require temporary disconnection please phone **0800 195 4141 (option 2)** for domestic and commercial disconnection, so that arrangement can be made to disconnect before work commences on site.

- 10. For information regarding supplies please contact us on **0800 195 4141 (option 2)**.
- 11. Please note that cable records supplied may not be up to date, or may be incomplete, if the area concerned is a new site.
- 12. For information regarding wayleave or easement agreements contact:

Manchester	08433 115157
Preston	08433 113969
Kendal	08433 115155

13. The latest cable records are always available for inspection during normal working hours and you should satisfy yourself that the information you have is up to date at the time you commence work. This service is consistent with the requirement of Regulation 36 of the Electricity Supply Regulations and paragraph 79 of the New Road and Street Works Act.

Please contact Data Management on **0800 195 4141** (option 2) to arrange an appointment to view the records.

304 Bridgewater Place Birchwood Park Warrington WA3 6XG

www.enwl.co.uk

Electricity North West Data Management, Electricity North West Linley House Dickinson Street Manchester, M1 4LF Phone: 0800 195 4141 Email: planrequest@enwl.co.uk Web: www.enwl.co.uk

Mr Mark Kingsley Lancashire County Council Design & Construction County Hall PRESTON Lancashire PR1 8XJ

Our Reference: 20596462

Your Reference: Cottam Parkway Access Bridge

Dear Mr Mark Kingsley

Electricity Network Plans

I acknowledge with thanks your request dated 20/11/2020 04:16:25 PM for information on the location of our services.

Please find enclosed plan(s) showing the approximate position of our apparatus known to be in the vicinity of this site.

I attach Conditions and information regarding electricity mains, which details contact numbers for additional services (i.e. new supplies, connections, diversion). In addition you should ensure they are made available to anyone carrying out any works which may affect our apparatus.

Yours sincerely,

Data Management

Mark Kingsley Lancashire County Council Design & Construction Geotechnical Team County Hall PRESTON Lancashire PR1 0LD Plant Protection Cadent Block 1; Floor 1 Brick Kiln Street Hinckley LE10 0NA E-mail: <u>plantprotection@cadentgas.com</u> Telephone: +44 (0)800 688588

National Gas Emergency Number: 0800 111 999*

National Grid Electricity Emergency Number: 0800 40 40 90* * Available 24 hours, 7 days/week. Calls may be recorded and monitored.

www.cadentgas.com

Date: 20/11/2020 Our Ref: NW_GW1B_3SWX_753914 Your Ref: Cottam Parkway RE: Proposed Works, Cottam Parkway Access Bridge

Thank you for your enquiry which was received on 20/11/2020.

An assessment has been carried out with respect to Cadent Gas Limited, National Grid Electricity Transmission plc's and National Grid Gas Transmission plc's apparatus. Please note it does not cover the items listed in the section "Your Responsibilities and Obligations", including gas service pipes and related apparatus. For details of Network areas please see the Cadent website (<u>http://cadentgas.com/Digging-safely/Dial-before-you-dig</u>) or the enclosed documentation.

Searches based on your enquiry have identified that there is no record of apparatus in the vicinity of your enquiry.

As your works are at a "proposed" stage, any maps and guidance provided are for information purposes only. This is not approval to commence work. You must submit a "Scheduled Works" enquiry at the earliest opportunity and failure to do this may lead to disruption to your plans and works. Plant Protection will endeavour to provide an <u>initial</u> assessment within 14 days of receipt of a Scheduled Works enquiry and dependent on the outcome of this, further consultation may be required.

In any event, for safety and legal reasons, works must not be carried out until a Scheduled Works enquiry has been completed and final response received.

Your Responsibilities and Obligations

The "Assessment" Section below outlines the detailed requirements that must be followed when planning or undertaking your scheduled activities at this location.

It is your responsibility to ensure that the information you have submitted is accurate and that all relevant documents including links are provided to all persons (either direct labour or contractors) working for you near Cadent and/or National Grid's apparatus, e.g. as contained within the Construction (Design and Management) Regulations.

This assessment solely relates to Cadent Gas Limited, National Grid Electricity Transmission plc (NGET) and National Grid Gas Transmission plc (NGGT) and apparatus. This assessment does **NOT** include:

- Cadent and/or National Grid's legal interest (easements or wayleaves) in the land which restricts activity in proximity to Cadent and/or National Grid's assets in private land. You must obtain details of any such restrictions from the landowner in the first instance and if in doubt contact Plant Protection.
- Gas service pipes and related apparatus
- Recently installed apparatus
- Apparatus owned by other organisations, e.g. other gas distribution operators, local electricity companies, other utilities, etc.

It is **YOUR** responsibility to take into account whether the items listed above may be present and if they could be affected by your proposed activities. Further "Essential Guidance" in respect of these items can be found on either the <u>National Grid</u> or <u>Cadent</u> website.

This communication does not constitute any formal agreement or consent for any proposed development work; either generally or with regard to Cadent and/or National Grid's easements or wayleaves nor any planning or building regulations applications.

Cadent Gas Limited, NGGT and NGET or their agents, servants or contractors do not accept any liability for any losses arising under or in connection with this information. This limit on liability applies to all and any claims in contract, tort (including negligence), misrepresentation (excluding fraudulent misrepresentation), breach of statutory duty or otherwise. This limit on liability does not exclude or restrict liability where prohibited by the law nor does it supersede the express terms of any related agreements.

If you require further assistance please contact the Plant Protection team via e-mail (<u>click here</u>) or via the contact details at the top of this response.

Yours faithfully

Plant Protection Team

GUIDANCE

Standard Guidance

Essential Guidance document: http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=8589934982

General Guidance document: http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=35103

Excavating Safely in the vicinity of gas pipes guidance (Credit card): http://www.nationalgrid.com/NR/rdonlyres/A3D37677-6641-476C-9DDA-E89949052829/44257/ExcavatingSafelyCreditCard.pdf

Excavating Safely in the vicinity of electricity cables guidance (Credit card): http://www.nationalgrid.com/NR/rdonlyres/35DDEC6D-D754-4BA5-AF3C-D607D05A25C2/44858/ExcavatingSafelyCreditCardelectricitycables.pdf

Copies of all the Guidance Documents can also be downloaded from the National Grid and Cadent websites.

ENQUIRY SUMMARY

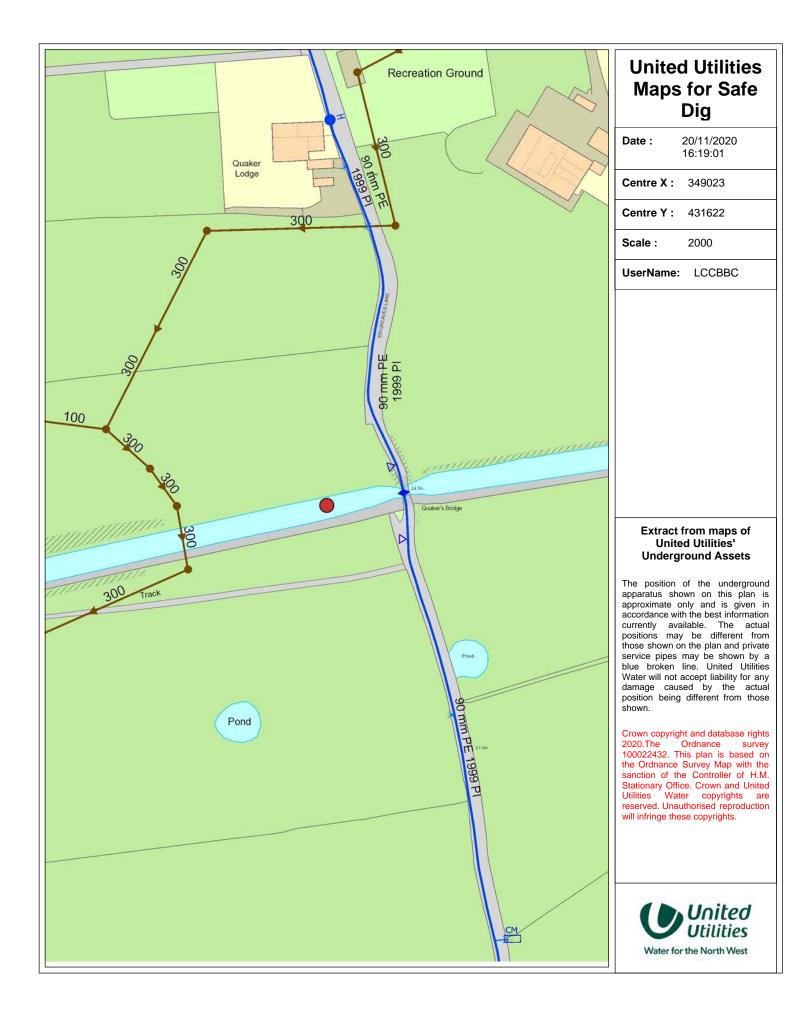
Received Date 20/11/2020

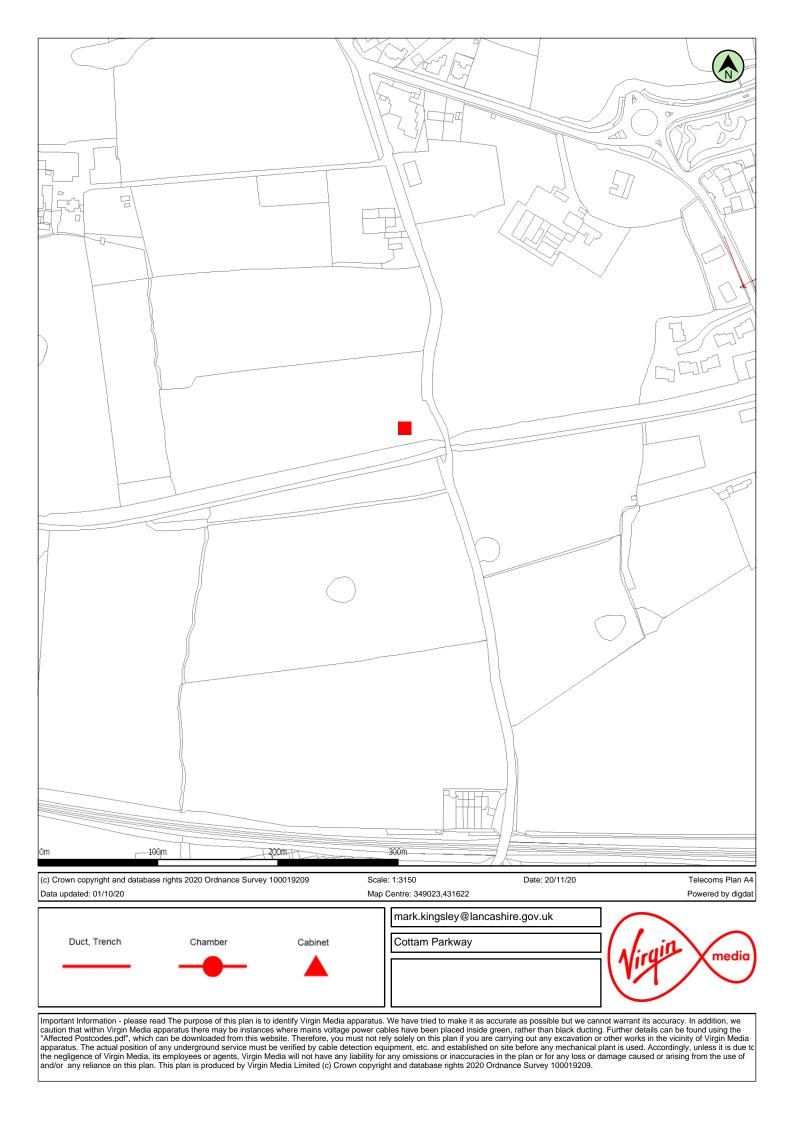
Your Reference Cottam Parkway

Location Centre Point: 349022, 431620 X Extent: 20 Y Extent: 30 Location Description: Cottam Parkway Access Bridge

Map Options Paper Size: A4 Orientation: PORTRAIT Requested Scale: 500 Actual Scale: N/A Real World Extents: N/A

Recipients mark.kingsley@lancashire.gov.uk


Enquirer Details Organisation Name: Lancashire County Council Contact Name: Mark Kingsley Email Address: mark.kingsley@lancashire.gov.uk Telephone: 01772 536473 Address: Design & Construction, Geotechnical Team, County Hall, PRESTON, Lancashire, PR1 0LD


Description of Works Site Investigation

Enquiry Type Proposed Works

Activity Type General Excavation

<u>Work Types</u> Work Type: Deep Excavation (greater than or equal to 0.3m) Work Type: Hand Digging Work Type: Shallow Excavation (less than 0.3m) Work Type: Boring/Moling/Horizontal Drilling less than or equal to 300mm Work Type: Boring/Moling/Horizontal Drilling greater than 300mm

Maps by email Plant Information Reply

IMPORTANT WARNING

Information regarding the location of BT apparatus is given for your assistance and is intended for general guidance only. No guarantee is given of its accuracy. It should not be relied upon in the event of excavations or other works being made near to BT apparatus which may exist at various depths and may deviate from the marked route.

openreach

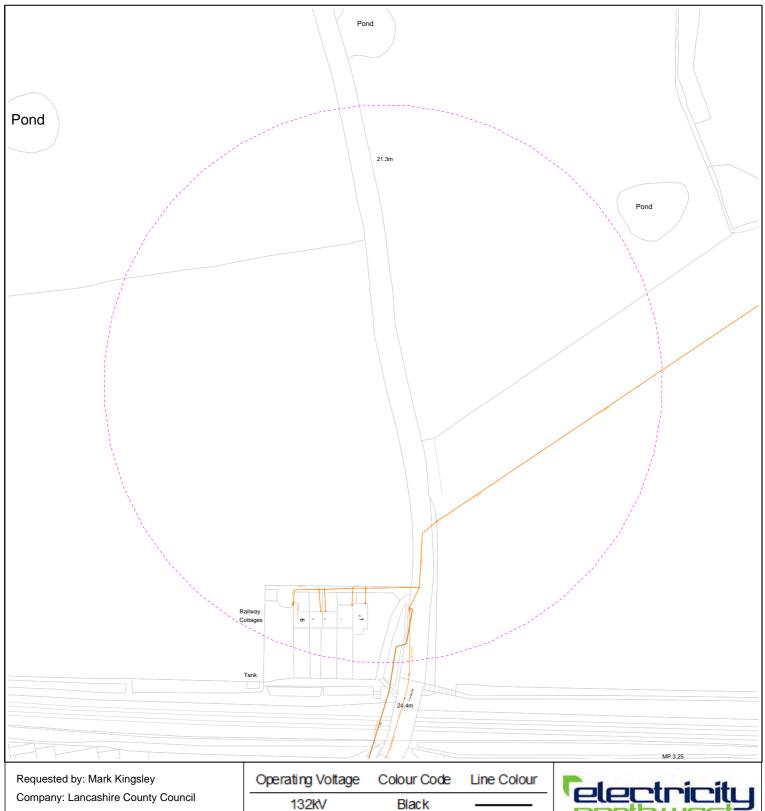
CLICK BEFORE YOU DIG

FOR PROFESSIONAL FREE ON SITE ASSISTANCE PRIOR TO COMMENCEMENT OF EXCAVATION WORKS INCLUDING LOCATE AND MARKING SERVICE

email cbyd@openreach.co.uk

ADVANCE NOTICE REQUIRED (Office hours: Monday - Friday 08.00 to 17.00) www.openreach.co.uk/cbyd

Accidents happen


If you do damage any Openreach equipment please let us know by calling 0800 023 2023 (opt 1 + opt 1) and we can get it fixed ASAP

> Reproduced from the Ordnance Survey map by BT by permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationary Office (C) Crown Copyright British Telecommunications plc 100028040

KEY TO BT SYMBOLS		Change Of + State		Hatchings	***		
	Planned	Live	Split Coupling	×	Built	~	
РСР			Duct Tee		Planned		
Pole	Q.	0	Building		Inferred	1	
Вох			Kiosk	ĸ	Duct	~	
Manhole					shown using da		
Cabinet	1	Û	BT Symbols not listed above may be disregarded. Existing BT Plant may not be recorded. Information valid at time of preparation. Maps are				
					ter the date of p		
	Pending Add	In Place	Pending Remove	Not In Use			
Power Cable	**	XX	44.	NN			
Power Duct	al al	-	44	N/A	-		

BT Ref : HRJ04018P Map Reference : (centre) SD4910331413 Easting/Northing : (centre) 349103,431413 Issued : 09/12/2020 16:01:42

WARNING: IF PLANNED WORKS FALL INSIDE HATCHED AREA IT IS ESSENTIAL BEFORE PROCEEDING THAT YOU CONTACT THE NATIONAL NOTICE HANDLING CENTRE. PLEASE SEND E-MAIL TO: nnhc@openreach.co.uk

Company: Lancashire County Council	132kV	Black	
Date Requested: 09/12/2020	33kV	Green	
Job Reference: 20761378	22kV-25kV	Yellow	
Your Scheme/Reference: Cottam Parkway S	11kV	Red	
	6kV-6.6kV	Blue	
	1kV-6kV	Violet	
Dig Sites:	LV	Orange	
Area Line	Unknown Voltage	Brown	

Unless otherwise indicated the depth of Electricity North West Limited cables are in accordance with NJUG (450mm for Low Voltage & 600mm for 11kV cables) 33kV and 132kV calles are liable in a leader to be depth or because thinks the set of the se other than Electricity North West Limited.

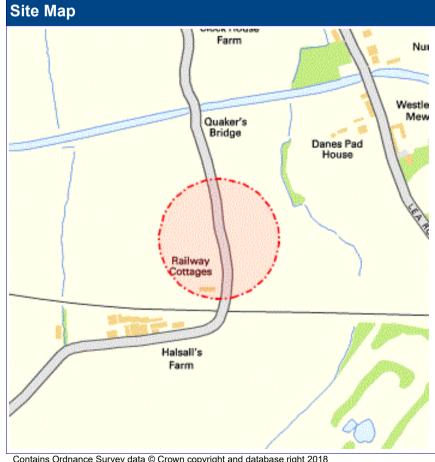
Reproduced from or based upon Ordnance Survey's map with the permission of Her Majesty's Stationary Office. Crown Copyright Reserved. LICENCE No. 100017892. Unauthorised reproduction may lead to Prosecution or Civil Proceedings.

Reference should be made to HSE Guidance, HS(G)47 "Avoiding Danger from Underground Services" and GS6 "Avoidance of Danger from Overhead Power Lines".

Electricity North West Limited 304 Bridgewater Place, Birchwood Park, Warrington WA3 6XG. Registered in England and Wales. Registered No 02366949

Data Management Electricity North West Linley House **Dickinson Street** Manchester, M1 4LF Phone: 0800 195 4141 Email: planrequest@enwl.co.uk

Scales on A4 paper: 1:1250 Area dig site 1:250 Line dig site



Enquiry Confirmation LSBUD Ref: 20761378

Enquirer							
Name	Mr Ma	ark Kingsley	Phone	01772 536473			
Company	Lancashire County Council Mobile Not Supplied						
Address	Design & Construction County Hall PRESTON Lancashire PR1 8XJ						
Email	mark.kingsley@lancashire.gov.uk						
Enquiry Details							
Scheme/Ref	ference	Cottam Parkway Station					

Scheme/Reference	Cottam Parkway Station					
Enquiry type	Initial Enquiry Work ca		Work category		Excavations Non Utility	
Start date	14/12/2020	Work type Multi		Multiple	ple excavations site	
End date	18/12/2020	Site size	200 me		tres diameter	
Searched location	XY= 349103, 431413	Work type buffer*		25 metres		
Confirmed location	349104 431414					
Site Contact Name	Not Supplied Site Phone No Not Supplied				Not Supplied	
Description of Works					·	

* The WORK TYPE BUFFER is a distance added to your search area based on the Work type you have chosen.

Asset Owners

Terms and Conditions. Please note that this enquiry is subject always to our standard terms and conditions available at www.linesearchbeforeudig.co.uk ("Terms of Use") and the disclaimer at the end of this document. Please note that in the event of any conflict or ambiguity between the terms of this Enquiry Confirmation and the Terms of Use, the Terms of Use shall take precedence.

Notes. Please ensure your contact details are correct and up to date on the system in case the LSBUD Members need to contact you.

Validity and search criteria. The results of this enquiry are based on the confirmed information you entered and are valid only as at the date of the enquiry. It is your responsibility to ensure that the Enquiry Details are correct, and LinesearchbeforeUdig accepts no responsibility for any errors or omissions in the Enquiry Details or any consequences thereof. LSBUD Members update their asset information on a regular basis so you are advised to consider this when undertaking any works. It is your responsibility to choose the period of time after which you need to resubmit any enquiry but the maximum time (after which your enquiry will no longer be dealt with by the LSBUD Helpdesk and LSBUD Members) is 28 days. If any details of the enquiry change, particularly including, but not limited to, the location of the work, then a further enquiry must be made.

Asset Owners & Responses. Please note the enquiry results include the following:

- 1. "LSBUD Members" who are asset owners who have registered their assets on the LSBUD service.
- 2. "Non LSBUD Members" are asset owners who have not registered their assets on the LSBUD service but LSBUD is aware of their existence. Please note that there could be other asset owners within your search area.

Below are three lists of asset owners:

- 1. LSBUD Members who have assets registered within your search area. ("Affected")
 - a.These LSBUD Members will either:
 - i. Ask for further information ("Email Additional Info" noted in status). The additional information includes: Site contact name and number, Location plan, Detailed plan (minimum scale 1:2500), Cross sectional drawings (if available), Work Specification.
 - ii. Respond directly to you ("Await Response"). In this response they may either send plans directly to you or ask for further information before being able to do so, particularly if any payments or authorisations are required.
- 2. LSBUD Members who do not have assets registered within your search area. ("Not Affected")
- 3. Non LSBUD Members who may have assets within your search area. Please note that this list is not exhaustive and all details are provided as a guide only. It is your responsibility to identify and consult with all asset owners before proceeding.

National Grid. Please note that the LSBUD service only contains information on National Grid's Gas above 7 bar asset, all National Grid Electricity Transmission assets and National Grid's Gas Distribution Limited above 2 bar asset.

For National Grid Gas Distribution Ltd below 2 bar asset information please go to www.beforeyoudig.nationalgrid.com

LSBUD Members who have assets registered on the LSBUD service within the vicinity of your search area.

List of affected LSBUD members				
Asset Owner	Phone/Email	Emergency Only	Status	
Electricity North West Limited	08001954141	08001954141	Await response	

LSBUD Members who do not have assets registered on the LSBUD service within the vicinity of your search area. Please be aware that LSBUD Members make regular changes to their assets and this list may vary for new enquiries in the same area.

	List of not affected LSBUD members	3
AWE Pipeline	Balfour Beatty Investments Limited	BOC Limited (A Member of the Linde Group)
BP Exploration Operating Company Limited	BPA	Carrington Gas Pipeline
CATS Pipeline c/o Wood Group PSN	Cemex	Centrica Storage Ltd
Chrysaor Production (UK) Limited	CLH Pipeline System Ltd	CNG Services Ltd
Concept Solutions People Ltd	ConocoPhillips (UK) Teesside Operator Ltd	Diamond Transmission Corporation
DIO (MOD Abandoned Pipelines)	DIO (MOD Live Pipelines)	Drax Group
E.ON UK CHP Limited	EirGrid	ENI & Himor c/o Penspen Ltd
EnQuest NNS Limited	EP Langage Limited	ESP Utilities Group
ESSAR	Esso Petroleum Company Limited	Fulcrum Pipelines Limited
Gamma	Gas Networks Ireland (UK)	Gateshead Energy Company
Gigaclear Ltd	Gtt	Heathrow Airport LTD
Humbly Grove Energy	IGas Energy	INEOS FPS Pipelines
INEOS Manufacturing (Scotland and TSEP)	INOVYN ChlorVinyls Limited	INOVYN Enterprises Limited
Intergen (Coryton Energy or Spalding Energy)	Jurassic Fibre Ltd	Mainline Pipelines Limited
Manchester Jetline Limited	Manx Cable Company	Marchwood Power Ltd (Gas Pipeline)
Melbourn Solar Limited	Murphy Utility Assets	National Grid Gas (Above 7 bar), National Grid Gas Distribution Limited (Above 2 bar) and National Grid Electricity Transmission
Northumbrian Water Group	NPower CHP Pipelines	NYnet Ltd
Oikos Storage Limited	Ørsted	Perenco UK Limited (Purbeck Southampton Pipeline)
Petroineos	Phillips 66	Portsmouth Water
Premier Transmission Ltd (SNIP)	Redundant Pipelines - LPDA	RWE - Great Yarmouth Pipeline (Bacton to Great Yarmouth Power Station)
RWEnpower (Little Barford and South Haven)	SABIC UK Petrochemicals	Scottish and Southern Electricity Networks
Scottish Power Generation	Seabank Power Ltd	SES Water
SGN	Shell	Shell NOP
SSE Enterprise Telecoms	SSE Generation Ltd	SSE Utility Solutions Limited
Tata Communications (c/o JSM Construction Ltd)	Total (Colnbrook & Colwick Pipelines)	Total Finaline Pipelines
Transmission Capital	UK Power Networks	Uniper UK Ltd
University of Cambridge Granta Backbone	Vattenfall	Veolia ES SELCHP Limited

Network

Veolia ES Sheffield Ltd

Western Power Distribution

Wales and West Utilities

Westminster City Council

West of Duddon Sands Transmission Ltd Zayo Group UK Ltd c/o JSM Group Ltd

Enquiry Confirmation LSBUD Ref: 20761378

The following Non-LSBUD Members may have assets in your search area. It is YOUR RESPONSIBILITY to contact them before proceeding. Please be aware this list is not exhaustive and it is your responsibility to identify and contact all asset owners within your search area.

Non-LSBUD members (Asset owners not registered on LSBUD)					
Asset Owner	Preferred contact method	Phone	Status		
BT	https://www.swns.bt.com/pls/mbe/welcome.home	08000232023	Not Notified		
Cadent Gas	plantprotection@cadentgas.com	0800688588	Not Notified		
CenturyLink Communications UK Limited	plantenquiries@instalcom.co.uk	02087314613	Not Notified		
CityFibre	asset.team@cityfibre.com	033 3150 7282	Not Notified		
Colt	plantenquiries@catelecomuk.com	01227768427	Not Notified		
Energetics Electricity	plantenquiries@lastmile-uk.com	01698404646	Not Notified		
ENGIE	nrswa.uk@engie.com	01293 549944	Not Notified		
GTC	https://pe.gtc-uk.co.uk/PlantEnqMembership	01359240363	Not Notified		
KPN (c/-Instalcom)	kpn.plantenquiries@instalcom.co.uk	n/a	Not Notified		
Lancashire County Council	highways@lancashire.gov.uk	03001236701	Not Notified		
Mobile Broadband Network Limited	mbnlplantenquiries@turntown.com	01212 621 100	Not Notified		
Sky UK Limited	nrswa@sky.uk	02070323234	Not Notified		
Sota	SOTA.plantenquiries@instalcom.co.uk		Not Notified		
Teliasonera	check-network@teliacompany.com	0800526015	Not Notified		
United Utilities	WastewaterDeveloperServices@uuplc.co.uk	08707510101	Not Notified		
Utility assets Ltd	assetrecords@utilityassets.co.uk		Not Notified		
Verizon Business	osp-team@uk.verizonbusiness.com	01293611736	Not Notified		
Virgin Media	http://www.digdat.co.uk	08708883116	Not Notified		
Vodafone	osm.enquiries@atkinsglobal.com	01454662881	Not Notified		

Disclaimer

Please refer to LinesearchbeforeUdig's Terms of Use for full terms of use available at www.linesearchbeforeudig.co.uk

The results of this Enquiry are personal to the Enquirer and shall not be shared with or relied upon by any other party. The asset information on which the Enquiry results are based has been provided by LSBUD Members, therefore LinesearchbeforeUdig will provide no guarantee that such information is accurate or reliable nor does it monitor such asset information for accuracy and reliability going forward. There may also be asset owners which do not participate in the enquiry service operated by LinesearchbeforeUdig, including but not exclusively those set out above. Therefore,

LinesearchbeforeUdig cannot make any representation or give any guarantee or warranty as to the completeness of the information contained in the enquiry results or accept any responsibility for the accuracy of the mapping images used. LinesearchbeforeUdig and its employees, agents and consultants accept no liability (save that nothing in this Enquiry Confirmation excludes or limits our liability for death or personal injury arising from our negligence, or our fraud or fraudulent misrepresentation, or any other liability that cannot be excluded or limited by English law) arising in respect thereof or in any other way for errors or omissions including responsibility to any person by reason of negligence.

Celectricity

Conditions and information regarding electricity mains

These general conditions and precautions apply to the electricity distribution system of Electricity North West Limited.

Please ensure that a copy of these conditions is passed to your representative and contractor on site.

- There may be other Electricity North West Limited apparatus in the vicinity, which is not indicated on the cable records. Other apparatus may also be present which a third party owns other than Electricity North West Limited
- Before any machines are used all of Electricity North West's underground apparatus should be located by manual excavation taking the appropriate safety precautions in accordance with the Health and Safety Executive Guidance note HS(G)47 "Avoiding danger from underground services". This contains advice to site personnel when working near underground services.

Underground services, particularly electricity and gas, can be dangerous. Damage to electricity cables can cause a dangerous flash, leading to severe burns or even death. Gas leaks can cause fire or explosion.

Damage can result from excavation or penetration of the ground, e.g. by a road pin.

Underground services may be found in roads, footpaths and on sites. Always assume that they are present. Treat any services found anywhere as live.

Accidents have happened because people have mistaken one service for another, e.g. black plastic covered electricity cables look like black plastic water pipes and cast iron gas and water mains look alike. Check before you act.

- 3. Before starting work you must:
 - Make sure you have plans of the underground services in the area. This may not always be possible for emergency or unforeseen works.
 Remember that service connection cables and pipes from the main to building or streetlight may not be shown.
 - Use a cable and pipe locator to trace electricity cables and metal pipes.
 - Look for signs of service connection cables or pipes, e.g. a gas meter or service connection entry into a house or a streetlight.
 - Hand dig trial holes (as many as necessary) to confirm the position of services in close proximity to the area of work.

- 4. When you start work:
 - Hand dig near buried services whenever possible.
 Spades and shovels are safer than picks, pins or forks.
 - Remember that cables may be embedded in concrete. Electricity cables embedded in concrete must either be made dead before the concrete is broken out or another safe way of working agreed with the cable owner.
 - Watch out for signs of services as work continues.
 - Report damage to a cable, pipe or pipe coating however slight.
 - Do not use hand held power tools within 0.5m of he marked position of an electricity cable, unless this is impracticable and the line of the cable has been identified by plans and positively confirmed by a locator.
 - Do not use hand held power tools directly over the marked line of cable unless:
 - a) You have already found the cable at that position by careful hand digging beneath the surface and it is at a safe depth (at least 300mm) below the bottom of the surface to be broken, or
 - b) Physical means have been used to prevent the tool striking it.
 - If an excavator is used near an electricity cable keep everyone clear of the bucket while it is digging.
 Buckets should not be used near cable – hand dig.
 - Do not use exposed services as a convenient step or handhold.
 - Do not handle or attempt to alter the position of an exposed service.
 - Do not install plant close to an existing service.
 - Do not build existing services into a manhole or other structure or encase them in concrete.

Would you also ensure that all site operators have this information and if any electrical apparatus is damaged, they/you should contact Electricity North West Limited fault desk on **0800 195 4141 (option 1)**

5. Overhead lines are not necessarily shown on the Electricity North West Limited cable records but may be present. In the event of work being carried out adjacent to overhead lines (including access, storage etc.) please always ensure strict adherence to the requirements of the Health and Safety Executive's Document GS6 "Avoidance of Danger from Overhead Electric Lines".

Extreme personal danger can result from contact, or near contact, with live conductors or overhead lines.

Treat all overhead lines and other electrical apparatus as live. If in doubt, get advice.

- 6. Electricity North West Limited must be consulted if work is to take place within 15 metres of overhead lines on steel towers or 9 metres of overhead lines on wood, concrete or steel pylons. (All distances should be measure at ground level from a position estimated by eye to be vertically under the outermost conductor at a tower or pole position) Any person involved in work in the vicinity of overhead lines should:
 - Understand and follow the instructions given on safe working areas and methods of work.
 - Make sure that warning notices are in the cabs of machines working in the vicinity of an overhead line.
 - Make sure that barriers and warning notices are erected as required.
 - Not tip soil or stack material underneath overhead lines as this may reduce the clearance to an unsafe distance.
 - Make sure when handling or using platforms, scaffold, poles, piping, ladders, hand tools etc., that they are kept at a safe distance from overhead lines.
 - Not steady a suspended load, skip, hoist wire, slings etc., unless satisfied that there isn't any danger from overhead lines.
 - Remember that when mobile plant, such as a crane or excavator, is operating near overhead lines, the raising or slewing of the jib may introduce danger.
 - Always keep overhead lines in view when manoeuvring mobile plant.
 - Never operate a machine unless carefully guided by an experienced banksman.
 - Not approach or touch any broken or fallen conductors or any plant in contact with an overhead line before Electricity North West Limited confirms that conditions are safe. Warn others to keep well clear.

Machine operators should note that: if a machine comes into contact with an overhead line and cannot be disentangled by backing off, remain seated in the cab and warn others to keep clear of the machine until Electricity North West Limited confirms that conditions are safe. If it is essential to leave the machine while it is in contact with the overhead line, for example if it catches fire, jump well clear – and **do not** attempt to climb down in the normal way nor touch any part of the machine when on the ground.

- 7. Electricity North West Limited provides approximate locations of its electricity mains or apparatus according to its records but these records are not necessarily accurate or complete and do not always show the position of private cables from mains to properties. No person or company shall be relieved from liability for any damage caused by reason of the actual positions and/or depths being different from those indicated.
- Care should be taken when excavating near cables. Known road crossings are highlighted on the enclosed plans. Should any cable, or Electricity North West Limited apparatus indicated on the attached plans, be affected by your proposals please contact us as follows:

Data Management Linley House Dickinson St Manchester M1 4LF

Telephone: 0800 195 4141 (option 2)

Details of diversion costs, if any, will be provided on request once your firm proposals have been submitted.

9. Please note that service cables may be affected by some of the works being carried out on site.

If any services do require temporary disconnection please phone **0800 195 4141 (option 2)** for domestic and commercial disconnection, so that arrangement can be made to disconnect before work commences on site.

- 10. For information regarding supplies please contact us on **0800 195 4141 (option 2)**.
- 11. Please note that cable records supplied may not be up to date, or may be incomplete, if the area concerned is a new site.
- 12. For information regarding wayleave or easement agreements contact:

Manchester	08433 115157
Preston	08433 113969
Kendal	08433 115155

13. The latest cable records are always available for inspection during normal working hours and you should satisfy yourself that the information you have is up to date at the time you commence work. This service is consistent with the requirement of Regulation 36 of the Electricity Supply Regulations and paragraph 79 of the New Road and Street Works Act.

Please contact Data Management on **0800 195 4141** (option 2) to arrange an appointment to view the records.

304 Bridgewater Place Birchwood Park Warrington WA3 6XG

www.enwl.co.uk

Electricity North West Data Management, Electricity North West Linley House Dickinson Street Manchester, M1 4LF Phone: 0800 195 4141 Email: planrequest@enwl.co.uk Web: www.enwl.co.uk

Mr Mark Kingsley Lancashire County Council Design & Construction County Hall PRESTON Lancashire PR1 8XJ

Our Reference: 20761378

Your Reference: Cottam Parkway Station

Dear Mr Mark Kingsley

Electricity Network Plans

I acknowledge with thanks your request dated 09/12/2020 04:12:21 PM for information on the location of our services.

Please find enclosed plan(s) showing the approximate position of our apparatus known to be in the vicinity of this site.

I attach Conditions and information regarding electricity mains, which details contact numbers for additional services (i.e. new supplies, connections, diversion). In addition you should ensure they are made available to anyone carrying out any works which may affect our apparatus.

Yours sincerely,

Data Management

Mark Kingsley Lancashire County Council Design & Construction Geotechnical Team County Hall PRESTON Lancashire PR1 0LD Plant Protection Cadent Block 1; Floor 1 Brick Kiln Street Hinckley LE10 0NA E-mail: <u>plantprotection@cadentgas.com</u> Telephone: +44 (0)800 688588

National Gas Emergency Number: 0800 111 999*

National Grid Electricity Emergency Number: 0800 40 40 90* * Available 24 hours, 7 days/week. Calls may be recorded and monitored.

www.cadentgas.com

Date: 09/12/2020 Our Ref: NW_GW1B_3SWX_761560 Your Ref: Cottam Parkway Station RE: Proposed Works, Cottam Parkway Station

Thank you for your enquiry which was received on 09/12/2020.

An assessment has been carried out with respect to Cadent Gas Limited, National Grid Electricity Transmission plc's and National Grid Gas Transmission plc's apparatus. Please note it does not cover the items listed in the section "Your Responsibilities and Obligations", including gas service pipes and related apparatus. For details of Network areas please see the Cadent website (<u>http://cadentgas.com/Digging-safely/Dial-before-you-dig</u>) or the enclosed documentation.

Searches based on your enquiry have identified that there is no record of apparatus in the vicinity of your enquiry.

As your works are at a "proposed" stage, any maps and guidance provided are for information purposes only. This is not approval to commence work. You must submit a "Scheduled Works" enquiry at the earliest opportunity and failure to do this may lead to disruption to your plans and works. Plant Protection will endeavour to provide an <u>initial</u> assessment within 14 days of receipt of a Scheduled Works enquiry and dependent on the outcome of this, further consultation may be required.

In any event, for safety and legal reasons, works must not be carried out until a Scheduled Works enquiry has been completed and final response received.

Your Responsibilities and Obligations

The "Assessment" Section below outlines the detailed requirements that must be followed when planning or undertaking your scheduled activities at this location.

It is your responsibility to ensure that the information you have submitted is accurate and that all relevant documents including links are provided to all persons (either direct labour or contractors) working for you near Cadent and/or National Grid's apparatus, e.g. as contained within the Construction (Design and Management) Regulations.

This assessment solely relates to Cadent Gas Limited, National Grid Electricity Transmission plc (NGET) and National Grid Gas Transmission plc (NGGT) and apparatus. This assessment does **NOT** include:

- Cadent and/or National Grid's legal interest (easements or wayleaves) in the land which restricts activity in proximity to Cadent and/or National Grid's assets in private land. You must obtain details of any such restrictions from the landowner in the first instance and if in doubt contact Plant Protection.
- Gas service pipes and related apparatus
- Recently installed apparatus
- Apparatus owned by other organisations, e.g. other gas distribution operators, local electricity companies, other utilities, etc.

It is **YOUR** responsibility to take into account whether the items listed above may be present and if they could be affected by your proposed activities. Further "Essential Guidance" in respect of these items can be found on either the <u>National Grid</u> or <u>Cadent</u> website.

This communication does not constitute any formal agreement or consent for any proposed development work; either generally or with regard to Cadent and/or National Grid's easements or wayleaves nor any planning or building regulations applications.

Cadent Gas Limited, NGGT and NGET or their agents, servants or contractors do not accept any liability for any losses arising under or in connection with this information. This limit on liability applies to all and any claims in contract, tort (including negligence), misrepresentation (excluding fraudulent misrepresentation), breach of statutory duty or otherwise. This limit on liability does not exclude or restrict liability where prohibited by the law nor does it supersede the express terms of any related agreements.

If you require further assistance please contact the Plant Protection team via e-mail (<u>click here</u>) or via the contact details at the top of this response.

Yours faithfully

Plant Protection Team

GUIDANCE

Standard Guidance

Essential Guidance document: http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=8589934982

General Guidance document: <u>http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=35103</u>

Excavating Safely in the vicinity of gas pipes guidance (Credit card): http://www.nationalgrid.com/NR/rdonlyres/A3D37677-6641-476C-9DDA-E89949052829/44257/ExcavatingSafelyCreditCard.pdf

Excavating Safely in the vicinity of electricity cables guidance (Credit card): http://www.nationalgrid.com/NR/rdonlyres/35DDEC6D-D754-4BA5-AF3C-D607D05A25C2/44858/ExcavatingSafelyCreditCardelectricitycables.pdf

Copies of all the Guidance Documents can also be downloaded from the National Grid and Cadent websites.

ENQUIRY SUMMARY

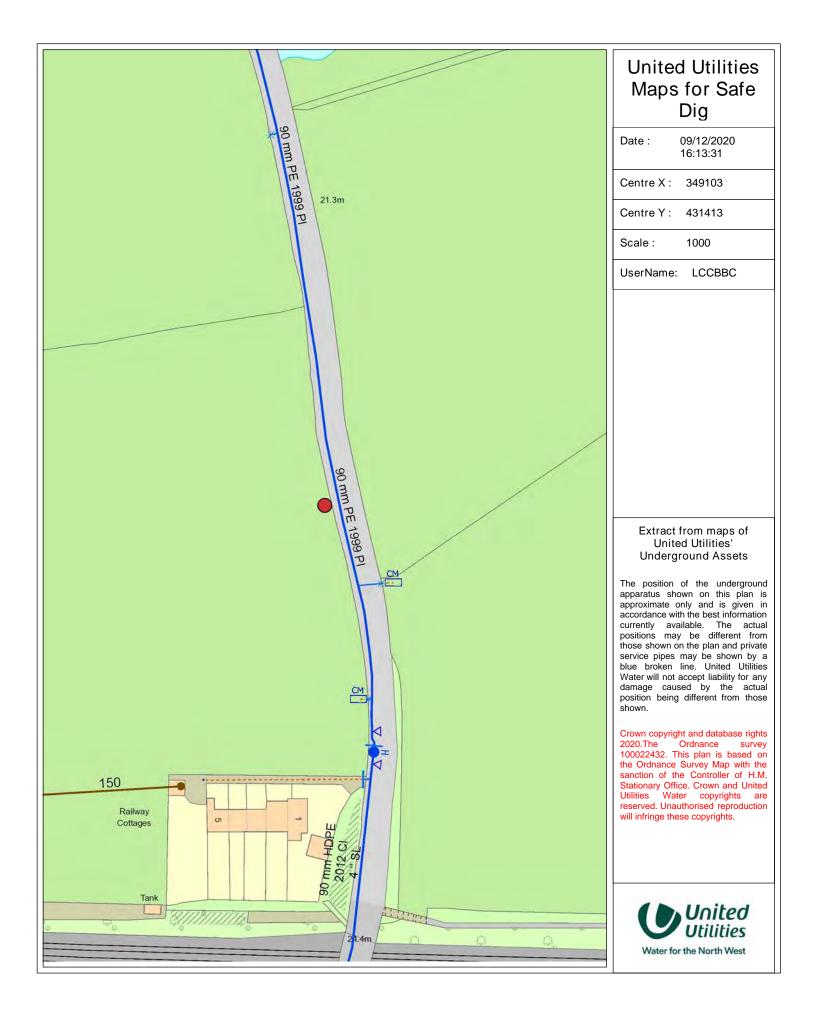
Received Date 09/12/2020

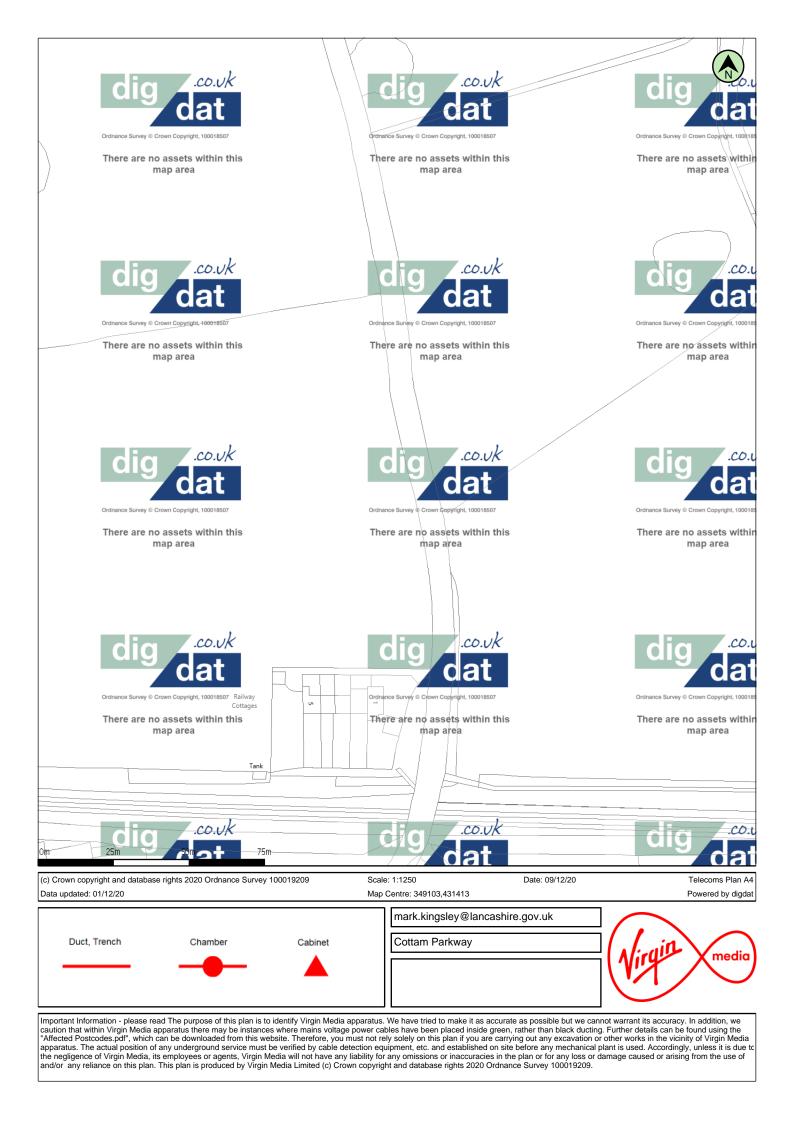
Your Reference Cottam Parkway Station

Location Centre Point: 349106, 431421 X Extent: 102 Y Extent: 92 Location Description: Cottam Parkway Station

Map Options Paper Size: A4 Orientation: PORTRAIT Requested Scale: 1250 Actual Scale: N/A Real World Extents: N/A

Recipients mark.kingsley@lancashire.gov.uk


Enquirer Details Organisation Name: Lancashire County Council Contact Name: Mark Kingsley Email Address: mark.kingsley@lancashire.gov.uk Telephone: 01772 536473 Address: Design & Construction, Geotechnical Team, County Hall, PRESTON, Lancashire, PR1 0LD


Description of Works Site Investigations

Enquiry Type Proposed Works

Activity Type General Excavation

<u>Work Types</u> Work Type: Deep Excavation (greater than or equal to 0.3m) Work Type: Hand Digging Work Type: Shallow Excavation (less than 0.3m) Work Type: Boring/Moling/Horizontal Drilling less than or equal to 300mm Work Type: Boring/Moling/Horizontal Drilling greater than 300mm



Enquiry Confirmation LSBUD Ref: 21408049

Enquirer			
Name	Mr Luke Thornton	Phone	07539698283
Company	Lancashire County Council	Mobile	Not Supplied
Address	44 Bay View Ave Lancaster Lancashire LA2 6JS		
Email	luke.thornton@lancashire.gov.uk		

Enquiry Details					
Scheme/Reference	CLM07 Cottam Parkway Station West				
Enquiry type	Planned Works Work category Excavations Non Utility				
Start date	01/03/2021 Work type Multiple excavations site				e excavations site
End date	31/03/2021 Site size 37028 metres square				metres square
Searched location	XY= 349339, 431345 Work type buffer* 25 metres				es
Confirmed location	349340 431348				
Site Contact Name	Luke Thornton		Site Ph	one No	07539698283
Description of Works					

Asset Owners

Terms and Conditions. Please note that this enquiry is subject always to our standard terms and conditions available at www.linesearchbeforeudig.co.uk ("Terms of Use") and the disclaimer at the end of this document. Please note that in the event of any conflict or ambiguity between the terms of this Enquiry Confirmation and the Terms of Use, the Terms of Use shall take precedence.

Notes. Please ensure your contact details are correct and up to date on the system in case the LSBUD Members need to contact you.

Validity and search criteria. The results of this enquiry are based on the confirmed information you entered and are valid only as at the date of the enquiry. It is your responsibility to ensure that the Enquiry Details are correct, and LinesearchbeforeUdig accepts no responsibility for any errors or omissions in the Enquiry Details or any consequences thereof. LSBUD Members update their asset information on a regular basis so you are advised to consider this when undertaking any works. It is your responsibility to choose the period of time after which you need to resubmit any enquiry but the maximum time (after which your enquiry will no longer be dealt with by the LSBUD Helpdesk and LSBUD Members) is 28 days. If any details of the enquiry change, particularly including, but not limited to, the location of the work, then a further enquiry must be made.

Asset Owners & Responses. Please note the enquiry results include the following:

- 1. "LSBUD Members" who are asset owners who have registered their assets on the LSBUD service.
- 2. "Non LSBUD Members" are asset owners who have not registered their assets on the LSBUD service but LSBUD is aware of their existence. Please note that there could be other asset owners within your search area.

Below are three lists of asset owners:

- 1. LSBUD Members who have assets registered within your search area. ("Affected")
 - a.These LSBUD Members will either:
 - i. Ask for further information ("Email Additional Info" noted in status). The additional information includes: Site contact name and number, Location plan, Detailed plan (minimum scale 1:2500), Cross sectional drawings (if available), Work Specification.
 - ii. Respond directly to you ("Await Response"). In this response they may either send plans directly to you or ask for further information before being able to do so, particularly if any payments or authorisations are required.
- 2. LSBUD Members who do not have assets registered within your search area. ("Not Affected")
- 3. Non LSBUD Members who may have assets within your search area. Please note that this list is not exhaustive and all details are provided as a guide only. It is your responsibility to identify and consult with all asset owners before proceeding.

National Grid. Please note that the LSBUD service only contains information on National Grid's Gas above 7 bar asset, all National Grid Electricity Transmission assets and National Grid's Gas Distribution Limited above 2 bar asset.

For National Grid Gas Distribution Ltd below 2 bar asset information please go to www.beforeyoudig.nationalgrid.com

LSBUD Members who have assets registered on the LSBUD service within the vicinity of your search area.

List of affected LSBUD members				
Asset Owner	Phone/Email	Emergency Only	Status	
Electricity North West Limited	08001954141	08001954141	Await response	

LSBUD Members who do not have assets registered on the LSBUD service within the vicinity of your search area. Please be aware that LSBUD Members make regular changes to their assets and this list may vary for new enquiries in the same area.

	List of not affected LSBUD members	
AWE Pipeline	Balfour Beatty Investments Limited	BOC Limited (A Member of the Linde Group)
Box Broadband	BP Exploration Operating Company Limited	BPA
Carrington Gas Pipeline	CATS Pipeline c/o Wood Group PSN	Cemex
Centrica Storage Ltd	Chrysaor Production (UK) Limited	CLH Pipeline System Ltd
CNG Services Ltd	Concept Solutions People Ltd	ConocoPhillips (UK) Teesside Operator Ltd
Diamond Transmission Corporation	DIO (MOD Abandoned Pipelines)	DIO (MOD Live Pipelines)
Drax Group	E.ON UK CHP Limited	EirGrid
ENI & Himor c/o Penspen Ltd	EnQuest NNS Limited	EP Langage Limited
ESP Utilities Group	ESSAR	Esso Petroleum Company Limited
Fulcrum Pipelines Limited	Gamma	Gas Networks Ireland (UK)
Gateshead Energy Company	Gigaclear Ltd	Gtt
Heathrow Airport LTD	Humbly Grove Energy	IGas Energy
INEOS FPS Pipelines	INEOS Manufacturing (Scotland and TSEP)	INOVYN ChlorVinyls Limited
INOVYN Enterprises Limited	Intergen (Coryton Energy or Spalding Energy)	Jurassic Fibre Ltd
Mainline Pipelines Limited	Manchester Jetline Limited	Manx Cable Company
Marchwood Power Ltd (Gas Pipeline)	Melbourn Solar Limited	Murphy Utility Assets
National Grid Gas (Above 7 bar), National Grid Gas Distribution Limited (Above 2 bar) and National Grid Electricity Transmission	Northumbrian Water Group	NPower CHP Pipelines
NYnet Ltd	Oikos Storage Limited	Ørsted
Perenco UK Limited (Purbeck Southampton Pipeline)	Petroineos	Phillips 66
Portsmouth Water	Premier Transmission Ltd (SNIP)	Redundant Pipelines - LPDA
RWE - Great Yarmouth Pipeline (Bacton to Great Yarmouth Power Station)	RWEnpower (Little Barford and South Haven)	SABIC UK Petrochemicals
Scottish and Southern Electricity Networks	Scottish Power Generation	Seabank Power Ltd
SES Water	SGN	Shell
Shell NOP	SSE Enterprise Telecoms	SSE Generation Ltd
SSE Utility Solutions Limited	Tata Communications (c/o JSM Construction Ltd)	Total (Colnbrook & Colwick Pipelines)
Total Finaline Pipelines	Transmission Capital	UK Power Networks
Uniper UK Ltd	University of Cambridge Granta Backbone	Vattenfall Page 3 of

Veolia ES SELCHP Limited
West of Duddon Sands Transmission Ltd
Zayo Group UK Ltd c/o JSM Group Ltd

Network

Veolia ES Sheffield Ltd Western Power Distribution Wales and West Utilities Westminster City Council

Enquiry Confirmation LSBUD Ref: 21408049

The following Non-LSBUD Members may have assets in your search area. It is YOUR RESPONSIBILITY to contact them before proceeding. Please be aware this list is not exhaustive and it is your responsibility to identify and contact all asset owners within your search area.

Non-LSBUD members (Asset owners not registered on LSBUD)					
Asset Owner	Preferred contact method	Phone	Status		
BT	https://www.swns.bt.com/pls/mbe/welcome.home	08000232023	Not Notified		
Cadent Gas	plantprotection@cadentgas.com	0800688588	Not Notified		
CenturyLink Communications UK Limited	plantenquiries@instalcom.co.uk	02087314613	Not Notified		
CityFibre	asset.team@cityfibre.com	033 3150 7282	Not Notified		
Colt	plantenquiries@catelecomuk.com	01227768427	Not Notified		
ENGIE	nrswa.uk@engie.com	01293 549944	Not Notified		
GTC	https://pe.gtc-uk.co.uk/PlantEnqMembership	01359240363	Not Notified		
Lancashire County Council	highways@lancashire.gov.uk	03001236701	Not Notified		
Last Mile	plantenguiries@lastmile-uk.com	plantenquiries@last	Not Notified		
	planteriquiries@lastifilie-uk.com	mile-uk.com	NOT NOTINED		
Mobile Broadband Network Limited	mbnl.plant.enquiries@turntown.com	01212 621 100	Not Notified		
Sky UK Limited	nrswa@sky.uk	02070323234	Not Notified		
Sota	SOTA.plantenquiries@instalcom.co.uk		Not Notified		
Teliasonera	check-network@teliacompany.com	0800526015	Not Notified		
United Utilities	WastewaterDeveloperServices@uuplc.co.uk	08707510101	Not Notified		
Utility assets Ltd	assetrecords@utilityassets.co.uk		Not Notified		
Verizon Business	osp-team@uk.verizonbusiness.com	01293611736	Not Notified		
Virgin Media	http://www.digdat.co.uk	08708883116	Not Notified		
Vodafone	osm.enquiries@atkinsglobal.com	01454662881	Not Notified		

Disclaimer

Please refer to LinesearchbeforeUdig's Terms of Use for full terms of use available at www.linesearchbeforeudig.co.uk

The results of this Enquiry are personal to the Enquirer and shall not be shared with or relied upon by any other party. The asset information on which the Enquiry results are based has been provided by LSBUD Members, therefore LinesearchbeforeUdig will provide no guarantee that such information is accurate or reliable nor does it monitor such asset information for accuracy and reliability going forward. There may also be asset owners which do not participate in the enquiry service operated by LinesearchbeforeUdig, including but not exclusively those set out above. Therefore,

LinesearchbeforeUdig cannot make any representation or give any guarantee or warranty as to the completeness of the information contained in the enquiry results or accept any responsibility for the accuracy of the mapping images used. LinesearchbeforeUdig and its employees, agents and consultants accept no liability (save that nothing in this Enquiry Confirmation excludes or limits our liability for death or personal injury arising from our negligence, or our fraud or fraudulent misrepresentation, or any other liability that cannot be excluded or limited by English law) arising in respect thereof or in any other way for errors or omissions including responsibility to any person by reason of negligence.

Requested by: Luke Thornton Company: Lancashire County Council Date Requested: 25/02/2021 Job Reference: 21408049	Operating Voltage 132kV 33kV 22kV-25kV	Colour Code Black Green Yellow	Line Colour	Celectricity

Data Management Electricity North West Linley House Dickinson Street Manchester, M1 4LF Phone: 0800 195 4141 Email: planrequest@enwl.co.uk

Scales on A4 paper: 1:1250 Area dig site 1:250 Line dig site

other than Electricity North West Limited. Reproduced from or based upon Ordnance Survey's map with the permission of Her Majesty's Stationary Office. Crown Copyright Reserved. LICENCE No. 100017892. Unauthorised reproduction may lead to Prosecution or Civil Proceedings.

being located differently to the indications on this drawing. Service cables are not necessarily shown but must be assumed to exist to all premises, streetlights and signs. There may be other Electricity North West Limited apparatus in the vicinity which is not indicated on the cable records. Other apparatus may also be present which is owned by a third party

Unless otherwise indicated the depth of Electricity North West Limited cables are in accordance with NJUG (450mm for Low Voltage & 600mm for 11kV cables) 33kV and 132kV cables are laid at depths as marked. The depth and positions of Electricity North West Limited equipment was accurate as shown when the equipment was installed. However third parties may have altered the level & other reference data. Therefore Electricity North West Limited cacept no responsibility for the position of Electricity North West Limited equipment being different from shown. No person, body or company, shall be relieved from liability for damage caused to Electricity North West Limited equipment by reason of

11kV

6kV-6.6kV

1kV-6kV

LV

Unknown Voltage

Reference should be made to HSE Guidance, HS(G)47 "Avoiding Danger from Underground Services" and GS6 "Avoidance of Danger from Overhead Power Lines".

Electricity North West Limited 304 Bridgewater Place, Birchwood Park, Warrington WA3 6XG. Registered in England and Wales. Registered No 02366949

Your Scheme/Reference: CLM07 Cottam Pai

.

Dig Sites:

Area Line

Red

Blue

Violet

Orange

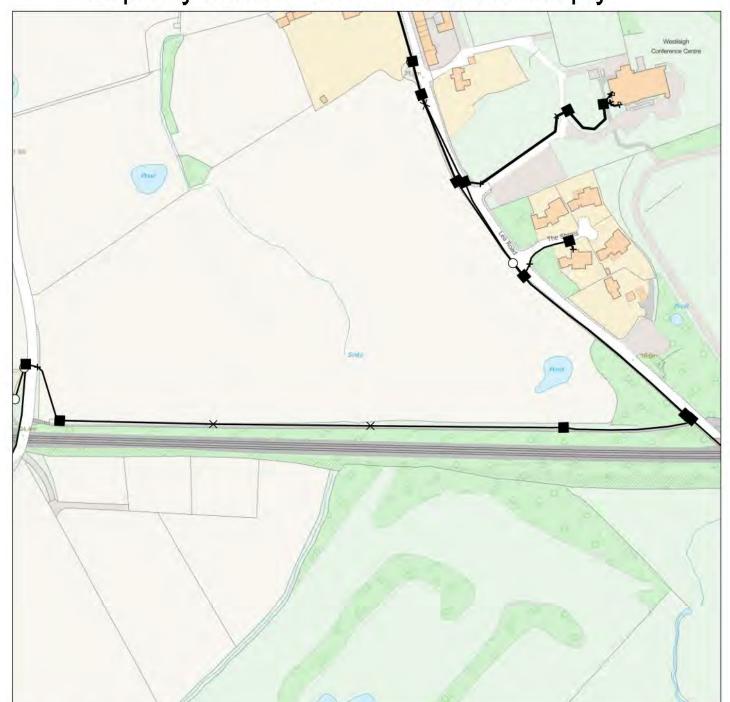
Brown

	Pond	1		Sints
2/4m	MP 325			
Requested by: Luke Thornton Company: Lancashire County Council Date Requested: 25/02/2021 Job Reference: 21408049 Your Scheme/Reference: CLM07 Cottam Pa	Operating Voltage 132kV 33kV 22kV-25kV 11kV 6kV-6.6kV	Colour Code Black Green Yellow Red Blue	Line Colour	Data Management
Dig Sites: Area Line Unless otherwise indicated the depth of Electricity North West Limited cables a				Electricity North West Linley House Dickinson Street Manchester, M1 4LF Phone: 0800 195 4141
cables are laid at depths as marked. The depth and positions of Electricity Norh parties may have altered the level & other reference data. Therefore Electricity equipment being different from shown. No person, body or company, shall be being located differently to the indications on this drawing. Service cables are u be other Electricity North West Limited apparatus in the vicinity which is not in other than Electricity North West Limited. Reproduced from or based upon Ordnance Survey's map with the permission or reproduction may lead to Prosecution or Civil Proceedings. Reference should be made to HSE Guidance, HS(G)47 "Avoiding Danger from the Electricity North West Limited 304 Bridgewater Place, Birchwood Park, Warring	th West Limited equipment was accurate a North West Limited accept no responsibili relieved from liability for damage caused t not necessarily shown but must be assume dicated on the cable records. Other appara of Her Majesty's Stationary Office. Crown C Underground Services" and GS6 "Avoidance	s shown when the equipment w ty for the position of Electricity Electricity North West Limited d to exist to all premises, street tus may also be present which opyright Reserved. LICENCE No e of Danger from Overhead Pow	as installed. However third North West Limited equipment by reason of tlights and signs. There may is owned by a third party 0. 100017892. Unauthorised wer Lines".	Email: planrequest@enwl.co.uk Scales on A4 paper: 1:1250 Area dig site 1:250 Line dig site

		e Megnines		
Sinks		2 Ponc	Ashfield Lodge	Pand
				MP 3.0
Requested by: Luke Thornton	Operating Voltage	Colour Code	Line Colour	P
Company: Lancashire County Council	132kV	Black		electricity
Date Requested: 25/02/2021	33kV	Green		north west
Job Reference: 21408049	22kV-25kV	Yellow		
Your Scheme/Reference: CLM07 Cottam Pa	11kV 6kV-6.6kV	Red Blue		Data Management
	1kV-6kV	Violet		Data Management Electricity North West
Dig Sites:	LV	Orange		Linley House Dickinson Street
Area Line	Unknown Voltage	Brown		Dickinson Street Manchester, M1 4I F

Unless otherwise indicated the depth of Electricity North West Limited cables are in accordance with NJUG (450mm for Low Voltage & 600mm for 11kV cables) 33kV and 132kV billes other wise indicated the upper of Lectricity north west cliniced cause are in accordance with robot (robotine to the robotine) and robotines of the course, some the reserve the cables are laid at depths as marked. The depth and positions of Electricity North West Limited equipment was accurate as shown when the equipment was installed. However third parties may have altered the level & other reference data. Therefore Electricity North West Limited equipment was accurate as shown when the equipment was installed. However third parties may have altered the level & other reference data. Therefore Electricity North West Limited accept no responsibility for the position of Electricity North West Limited equipment being different from shown. No person, body or company, shall be relieved from liability for damage caused to Electricity North West Limited equipment by reason of being located differently to the indications on this drawing. Service cables are not necessarily shown but must be assumed to exist to all premises, streetlights and signs. There may be other Electricity North West Limited apparatus in the vicinity which is not indicated on the cable records. Other apparatus may also be present which is owned by a third party other than Electricity North West Limited.

Reproduced from or based upon Ordnance Survey's map with the permission of Her Majesty's Stationary Office. Crown Copyright Reserved. LICENCE No. 100017892. Unauthorised reproduction may lead to Prosecution or Civil Proceedings.


Reference should be made to HSE Guidance, HS(G)47 "Avoiding Danger from Underground Services" and GS6 "Avoidance of Danger from Overhead Power Lines".

Electricity North West Limited 304 Bridgewater Place, Birchwood Park, Warrington WA3 6XG. Registered in England and Wales. Registered No 02366949

Manchester, M1 4LI Phone: 0800 195 4141 Email: planrequest@enwl.co.uk

Scales on A4 paper: 1:1250 Area dig site 1:250 Line dig site

Maps by email Plant Information Reply

IMPORTANT WARNING Information regarding the location of BT apparatus is given for your assistance and is intended for general guidance only. No guarantee is given of its accuracy. It should not be relied upon in the event of excavations or other works being made near to BT apparatus which may exist at various depths and may deviate from the marked route

openread

CLICK BEFORE YOU DIG FOR PROFESSIONAL FREE ON SITE ASSISTANCE PRIOR TO COMMENCEMENT OF EXCAVATION WORKS INCLUDING LOCATE AND MARKING SERVICE

email cbyd@openreach.co.uk

ADVANCE NOTICE REQUIRED (Office hours: Monday - Friday 08.00 to 17.00) www.openreach.co.uk/cbyd

Accidents happen

If you do damage any Openreach equipment please let us know by calling 0800 023 2023 (opt 1 + opt 1) and we can get it fixed ASAP

Reproduced from the Ordnance Survey map by BT by permission of Ordnance Survey on behalf of the Controller of Her Majesty's Stationary Office (C) Crown Copyright British Telecommunications plc 100028040

KEY TO BT SYMBOLS		Change Of State	+	Hatchings	**			
	Planned	Live	Split Coupling	×	Built	1		
РСР			Duct Tee		Planned			
Pole	0	0	Building		Inferred	~		
Box			Kiosk	ĸ	Duct	1		
Manhole			Other proposed plant is shown using dashed lines.					
mannon			the second se					
Cabinet	1	Û	BT Symbols Existi Information	ng BT Plant n valid at time	bove may be di nay not be reco e of preparatio ter the date of p	rded. n. Maps are		
	Pending Add	In Place	BT Symbols Existi Information	ng BT Plant n valid at time	bove may be di nay not be reco e of preparatio	rded. n. Maps are		
	1	Û	BT Symbols Existi Information only valid fo <i>Pending</i>	ng BT Plant n valid at time or 90 days af	bove may be di nay not be reco e of preparatio	rded. n. Maps are		

: 1 100103220 Map Reference : (centre) SD4935431344 Easting/Northing : (centre) 349354,431344 Issued : 25/02/2021 10:32:37

WARNING: IF PLANNED WORKS FALL INSIDE HATCHED AREA IT IS ESSENTIAL BEFORE PROCEEDING THAT YOU CONTACT THE NATIONAL NOTICE HANDLING CENTRE. PLEASE SEND E-MAIL TO: nnhc@openreach.co.uk

Luke Thornton Lancashire County Council County Hall Pitt Street Preston Preston Lancashire PR1 8XB Plant Protection Cadent Block 1; Floor 1 Brick Kiln Street Hinckley LE10 0NA E-mail: <u>plantprotection@cadentgas.com</u> Telephone: +44 (0)800 688588

National Gas Emergency Number: 0800 111 999*

National Grid Electricity Emergency Number: 0800 40 40 90* * Available 24 hours, 7 days/week. Calls may be recorded and monitored.

www.cadentgas.com

Date: 25/02/2021 Our Ref: NW_GW1B_3SWX_791507 Your Ref: CLM07 Cottam Parkway Station West RE: Proposed Works, Cottam West

Thank you for your enquiry which was received on 25/02/2021.

An assessment has been carried out with respect to Cadent Gas Limited, National Grid Electricity Transmission plc's and National Grid Gas Transmission plc's apparatus. Please note it does not cover the items listed in the section "Your Responsibilities and Obligations", including gas service pipes and related apparatus. For details of Network areas please see the Cadent website (<u>http://cadentgas.com/Digging-safely/Dial-before-you-dig</u>) or the enclosed documentation.

Searches based on your enquiry have identified that there is no record of apparatus in the vicinity of your enquiry.

As your works are at a "proposed" stage, any maps and guidance provided are for information purposes only. This is not approval to commence work. You must submit a "Scheduled Works" enquiry at the earliest opportunity and failure to do this may lead to disruption to your plans and works. Plant Protection will endeavour to provide an <u>initial</u> assessment within 14 days of receipt of a Scheduled Works enquiry and dependent on the outcome of this, further consultation may be required.

In any event, for safety and legal reasons, works must not be carried out until a Scheduled Works enquiry has been completed and final response received.

Your Responsibilities and Obligations

The "Assessment" Section below outlines the detailed requirements that must be followed when planning or undertaking your scheduled activities at this location.

It is your responsibility to ensure that the information you have submitted is accurate and that all relevant documents including links are provided to all persons (either direct labour or contractors) working for you near Cadent and/or National Grid's apparatus, e.g. as contained within the Construction (Design and Management) Regulations.

This assessment solely relates to Cadent Gas Limited, National Grid Electricity Transmission plc (NGET) and National Grid Gas Transmission plc (NGGT) and apparatus. This assessment does **NOT** include:

- Cadent and/or National Grid's legal interest (easements or wayleaves) in the land which restricts activity in proximity to Cadent and/or National Grid's assets in private land. You must obtain details of any such restrictions from the landowner in the first instance and if in doubt contact Plant Protection.
- Gas service pipes and related apparatus
- Recently installed apparatus
- Apparatus owned by other organisations, e.g. other gas distribution operators, local electricity companies, other utilities, etc.

It is **YOUR** responsibility to take into account whether the items listed above may be present and if they could be affected by your proposed activities. Further "Essential Guidance" in respect of these items can be found on either the <u>National Grid</u> or <u>Cadent</u> website.

This communication does not constitute any formal agreement or consent for any proposed development work; either generally or with regard to Cadent and/or National Grid's easements or wayleaves nor any planning or building regulations applications.

Cadent Gas Limited, NGGT and NGET or their agents, servants or contractors do not accept any liability for any losses arising under or in connection with this information. This limit on liability applies to all and any claims in contract, tort (including negligence), misrepresentation (excluding fraudulent misrepresentation), breach of statutory duty or otherwise. This limit on liability does not exclude or restrict liability where prohibited by the law nor does it supersede the express terms of any related agreements.

If you require further assistance please contact the Plant Protection team via e-mail (<u>click here</u>) or via the contact details at the top of this response.

Yours faithfully

Plant Protection Team

GUIDANCE

Standard Guidance

Essential Guidance document: http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=8589934982

General Guidance document: <u>http://www2.nationalgrid.com/WorkArea/DownloadAsset.aspx?id=35103</u>

Excavating Safely in the vicinity of gas pipes guidance (Credit card): http://www.nationalgrid.com/NR/rdonlyres/A3D37677-6641-476C-9DDA-E89949052829/44257/ExcavatingSafelyCreditCard.pdf

Excavating Safely in the vicinity of electricity cables guidance (Credit card): http://www.nationalgrid.com/NR/rdonlyres/35DDEC6D-D754-4BA5-AF3C-D607D05A25C2/44858/ExcavatingSafelyCreditCardelectricitycables.pdf

Copies of all the Guidance Documents can also be downloaded from the National Grid and Cadent websites.

ENQUIRY SUMMARY

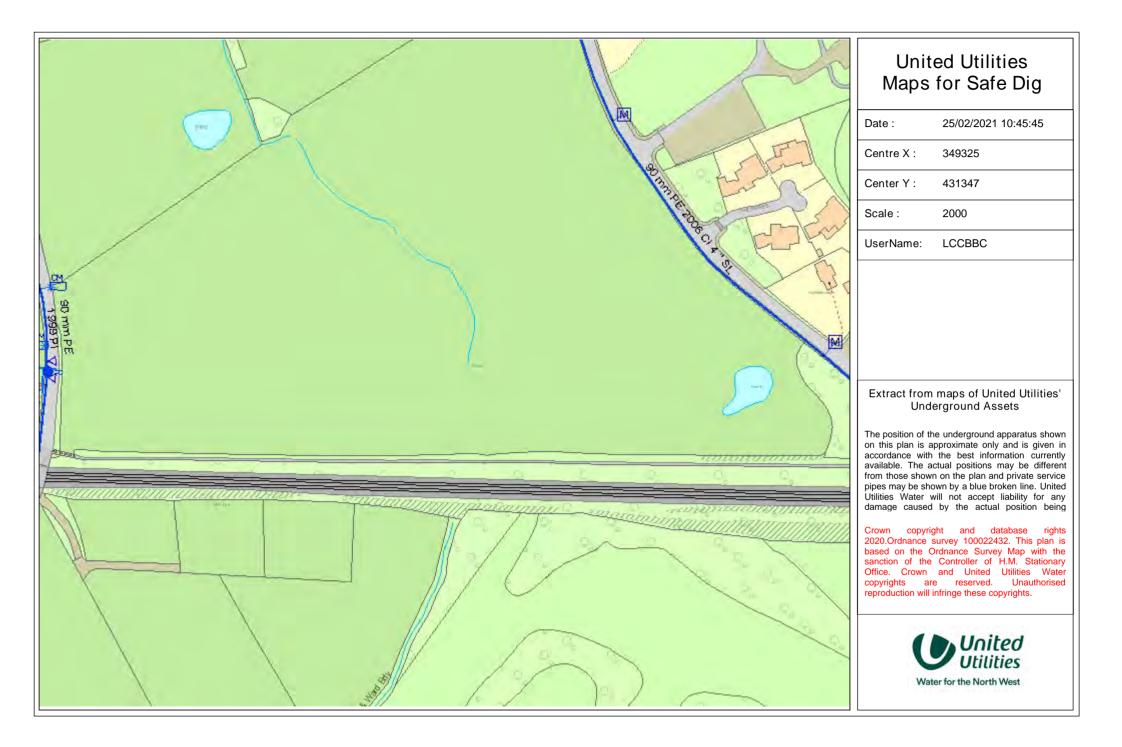
Received Date 25/02/2021

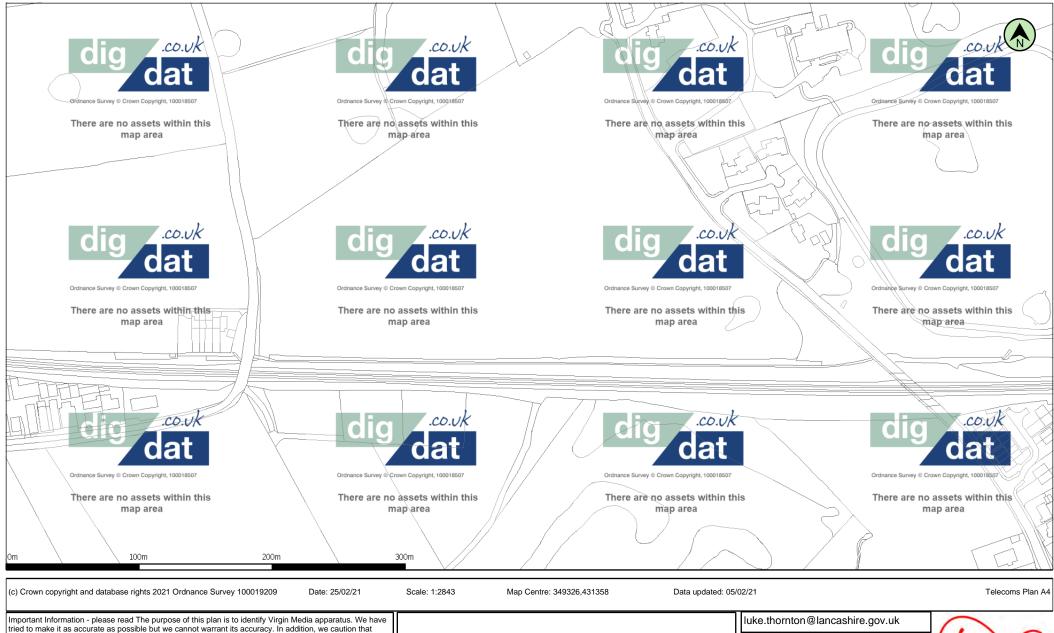
Your Reference CLM07 Cottam Parkway Station West

Location Centre Point: 349359, 431335 X Extent: 452 Y Extent: 76 Postcode: PR4 0RE Location Description: Cottam West

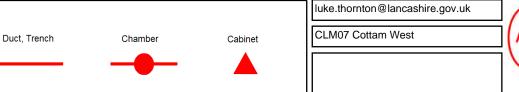
Map Options Paper Size: A4 Orientation: LANDSCAPE Requested Scale: 2500 Actual Scale: N/A Real World Extents: N/A

Recipients luke.thornton@lancashire.gov.uk

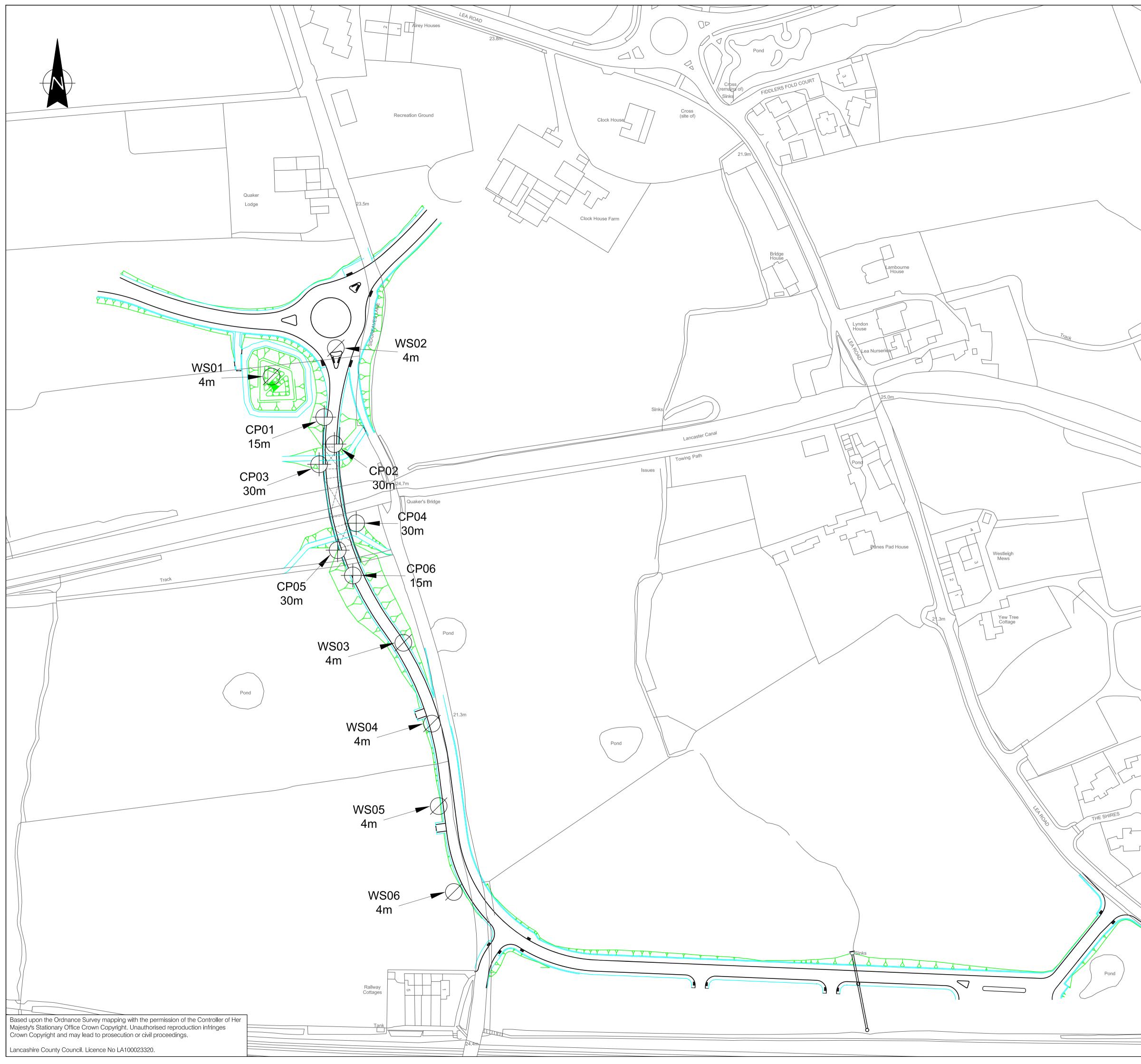

Enquirer Details Organisation Name: Lancashire County Council Contact Name: Luke Thornton Email Address: luke.thornton@lancashire.gov.uk Telephone: 07539698283 (07539698283) Address: County Hall, Pitt Street, Preston, Preston, Lancashire, PR1 8XB


<u>Description of Works</u> Luke Thornton 07539698283. site investigation

Enquiry Type Proposed Works


Activity Type General Excavation

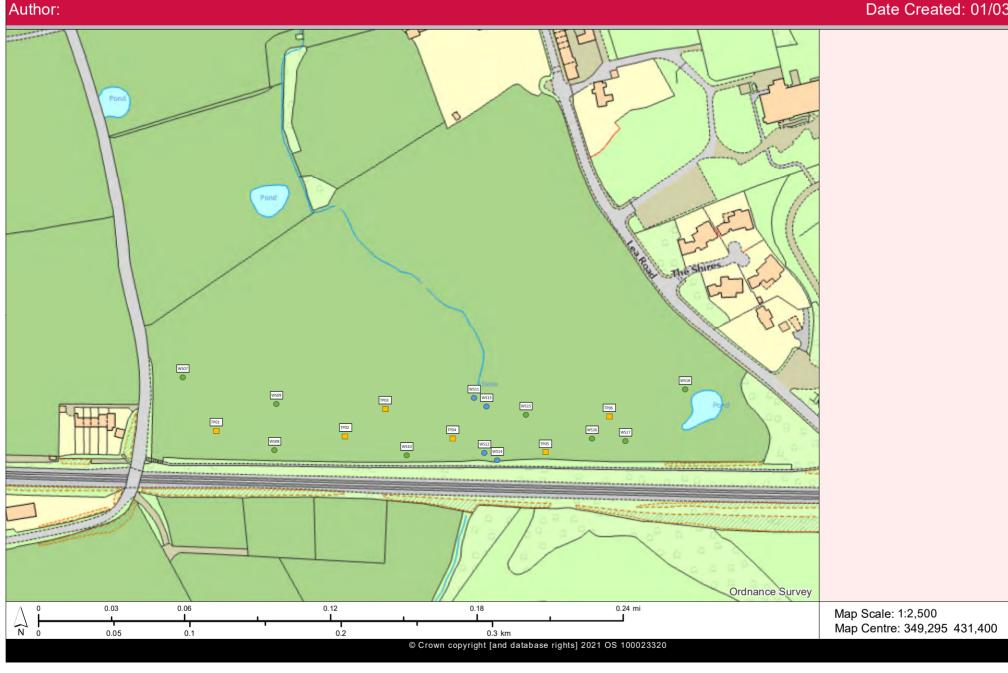
<u>Work Types</u> Work Type: Deep Excavation (greater than or equal to 0.3m) Work Type: Hand Digging Work Type: Shallow Excavation (less than 0.3m) Work Type: Boring/Moling/Horizontal Drilling less than or equal to 300mm Work Type: Boring/Moling/Horizontal Drilling greater than 300mm



within Virgin Media apparatus there may be instances where mains voltage power cables have been placed inside green, rather than black ducting. Further details can be found using the "Affected Postcodes.pdf", which can be downloaded from this website. Therefore, you must not rely solely on this plan if you are carrying out any excavation or other works in the vicinity of Virgin Media apparatus. The actual position of any underground service must be verified by cable detection equipment, etc. and established on site before any mechanical plant is used. Accordingly, unless it is due to the negligence of Virgin Media, its employees or agents, Virgin Media will not have any liability for any omissions or inaccuracies in the plan or for any loss or damage caused or arising from the use of and/or any reliance on this plan. This plan is produced by Virgin Media Limited (c) Crown copyright and database rights 2020 Ordnance Survey 100019209.

Appendix E

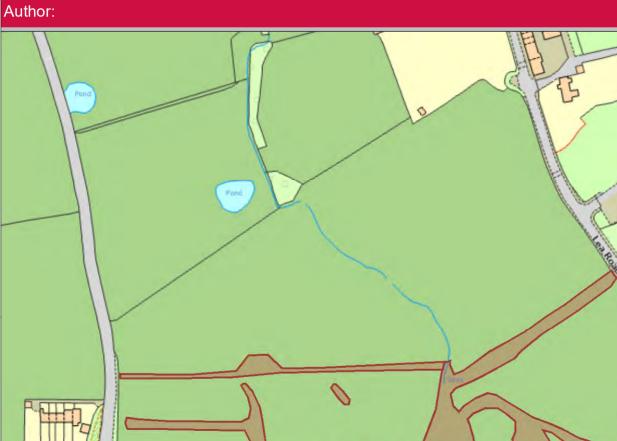
Preliminary site investigation model



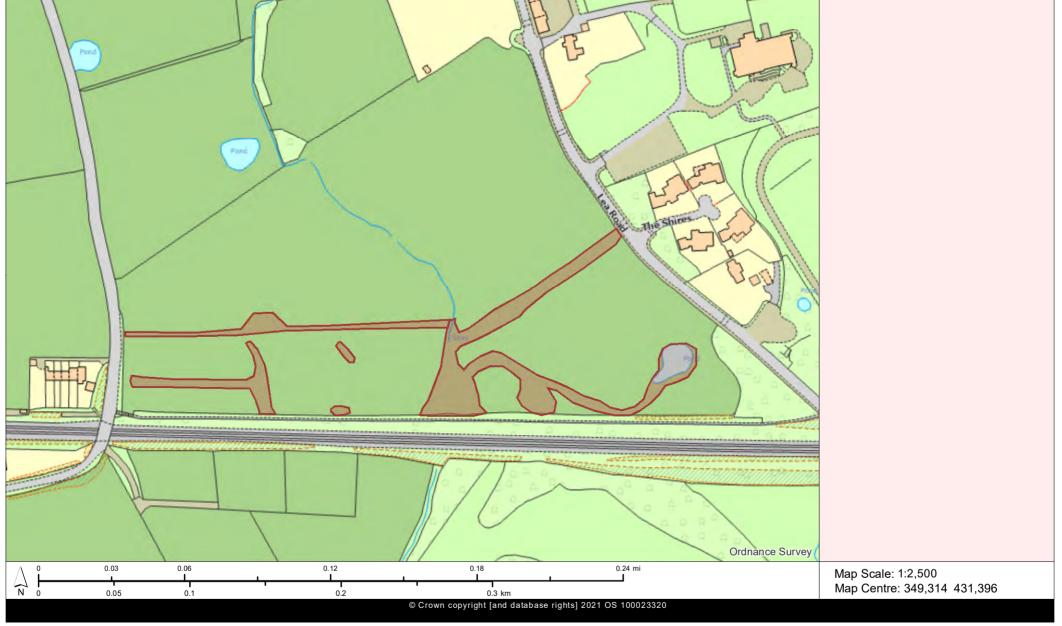
1 I				3 R.	AD 12	
	Shelter		H			
		Shelter	V El Sub Sta		12	
		7			OUTGAT	
	/					
		Colored Colore				
			EHL			
1	_ / /		\rightarrow		TH	
			\rightarrow			
\nearrow		\sim	\sim			
				est of the second secon		
A		\sim				
		\setminus //	\land			
			\searrow			
			$\langle \rangle$			
			$\langle \rangle$		j / []	
					45	
21.3m						
		FB				
			Pond		<i>[</i> -	
	Westleigh Conference Centre					
	P	\setminus \bigcirc	\sim			
IL FE						
-						
$\langle \rangle$						
\sim						
		IENT DETAILS		CHECKED BY	DRAWN BY	
	REVISIONS					
	Lancash		ina o	Envira	nmont	
	County Council		my ø	Enviro		
			!'	—		
Ashfield Lodge		City Deal D	Pelivery	Ieam		
	PROJECT TITLE (COTTAM PARKWAY	ACCESS BI	RIDGE & ROAD		
	DRAWING TITLE	-				
		BORE	HOLE PLAN	N		
	DRAWN BY	МК	PROJECT No			
	CHECKED BY	JS	DRAWING No).		
	DATE	_	1			
)	SCALE @ A1	IANUARY 2021 NTS	SHEET No.		REVISION:	
	CLIENT No.	0101	_	1	0	
				-		

Car Park Borehole Plan

Date Created: 01/03/2021



Appendix F


Additional topographical map

South-Eastern Ditches Map

Date Created: 14/05/2021

