

Cottam Parkway Railway Station

Environmental Statement

Volume 2: Main Statement Chapter: Water Environment Document Reference: 07-ES-02-11-04

www.lancashire.gov.uk

ES Chapter Document Control

Project Title: Cottam Parkway Railway Station

Document Reference: 07-ES-02-11-04

Chapter Title: Water Environment

Version No: 4

	Created By	Checked By	LCC Checker and Date Comments Provided
Version 1	Mark Uren	Rebecca	Robert Taylor
October 2021	Mark Johnson	Johnson	Paul Freeman
	Emma Maclaren		25/10/2021
	Charles Dennison		
	Eilidh Peddie		
Version 3	Mark Johnson	Rebecca	Robert Taylor
November	Ben Smith	Westlake	Nick Benson
2021	Charles Dennison		26/05/2022
	Daniel Jeffries		
Version 3	Mark Johnson	Rebecca	Grace Wilson
June 2022	Emma Maclaren	Westlake	01/07/2022
	Mark Uren		
	Mandy Wallace		
	Charles Dennison		
	Chris Isherwood		
	Eilidh Peddie Daniel Jeffries		
Version 4	rsion 4 Rebecca Westlake Grace 15/08/2022		15/08/2022
August 2022		VVIISON	
Document Status	Final		

11 Water Environment

ES Chapter	Environmental	Relevant Appendices
Number	Торіс	
11	Water	Appendix 11.1: Flood Risk
	Environment	Assessment
		Appendix 11.2 Highways England
		Water Risk Assessment Tool
		(HEWRAT)
		Appendix 11.3 Water Environment
		Regulations (WER) Compliance
		Assessment
		Appendix 11.4 Figures

11.1 Introduction

11.1.1 This chapter presents the assessment of the Scheme in terms of the surface water environment as follows: surface water quality, surface water supply, hydromorphology, flood risk and groundwater. A brief overview of the Scheme description is provided in 11.1.8 – 11.1.9. For a full description of the Scheme, please refer to Chapter 3 'Description' in this ES.

Hydrological Setting

11.1.2 The Scheme is hydrologically situated within the Savick Brook catchment which has a total catchment area of 49.5km². Its source is in the village of Longridge and the catchment is predominately rural in nature before flowing through Preston city centre. The watercourse flows from east to west, approximately 500m south of the Scheme and joins the River Ribble approximately 3.0km downstream of the Scheme. Savick Brook is also referred to as the Millennium Ribble Link as it has been canalised to form a navigable watercourse with locks; it connects the Ribble Estuary to the Lancaster Canal.

- 11.1.3 The Lancaster Canal is an artificial, navigable waterway that runs east to west. The canal is located approximately 350m north of the railway station building and is crossed by the access road. The canal is 67km in length and provides a navigable link between the Lancaster Canal and the River Ribble through Savick Brook (via locks on Savick Brook).
- 11.1.4 Three Ordinary Watercourses flow north to south through or adjacent to the Scheme:
 - Lady Head Runnel flows east of the Scheme. It has three culverts upstream of the railway line and starts to flow uncovered from Lea Road south of the Fylde Line/Blackpool Branch Line.
 - The middle Ordinary Watercourse is unnamed on Ordnance Survey (OS) mapping and is referred to as Central Watercourse in this chapter. This watercourse flows through the Scheme location via a culvert below the proposed station building, car park and platform structures.
 - The third Ordinary Watercourse is situated approximately 350m to the west of the Central Watercourse. This watercourse is referred to as the Western Watercourse in this report.
- 11.1.5 Each ordinary watercourse is culverted beneath the Lancaster Canal and the Fylde Line/Blackpool Branch Line before converging and joining Savick Brook. Figure 11.1 illustrates the location of Savick Brook, the Lancaster Canal and the three identified Ordinary Watercourses in relation to the Scheme.
- 11.1.6 There is a watercourse to the far west of the Scheme which is a tributary of the Western Watercourse. There are also a number of ponds within the vicinity of the Scheme with no known outflow, which are assumed to have

originated as marl pits. These water bodies have been scoped out of any surface water quality and hydromorphology impact assessment because they are not hydrologically connected to the Scheme.

Scheme Description

- 11.1.7 The features of key relevance to the water environment are summarised below:
 - a new surface water drainage system that routes surface water runoff from the access road, Railway Station and car park into attenuation storage prior to discharge into local watercourses;
 - an access road bridge and associated earthworks and embankments over the Lancaster Canal;
 - piling foundations for the access road bridge, footbridge, platform and overhead lines;
 - excavations for both the attenuation pond for the access road and the underground attenuation storage, as well as any cuttings associated with the access road;
 - construction of embankments for the access road, Railway Station and platforms;
 - a new 900mm diameter culvert upstream of the Preston Fylde Junction to Blackpool North line to convey the Central Watercourse beneath the car park and Railway Station. This would replace an existing 225mm diameter culvert along the Central Watercourse and tie into the existing 975mm diameter culvert beneath the railway line;
 - an extension of the existing 975mm railway culvert to enable the installation of an emergency evacuation route along the south of the railway line; and

 a culvert extension to convey Lady Head Runnel beneath a proposed emergency muster point and emergency vehicle turning head to the south-east of the Scheme.

11.2 Consultation

- 11.2.1 During the course of this assessment, consultation has taken place with relevant statutory and non-statutory consultees and stakeholders
- 11.2.2 This has been summarised in Table 11.1.

Table 11.1: Guidance from consultees

Consultee	Date	Comment
Environment	14 December	Protection of Groundwater
Agency	2021	Para 2.1.56 of 'Description of the Station and Summary of the Environmental Reports' (undated) states "no negative impacts to groundwater are anticipated." We would like to highlight that the site is located over a Principle Aquifer from the Sherwood Sandstone Group, in Zone 2 of the Source Protection Zone. This should be taken into consideration when designing drainage schemes, and any potential impacts on this resource must be avoided.
The Canal and River Trust (the Trust)	27 January 2022	According to our records there is a watercourse passing underneath the station which seems to be the same watercourse which connects to our culvert 6 under the canal. Based on our records it appears that the outfall side of this watercourse is on the towpath side of the canal, so the station would be downstream. We note that only a short section on drainage and this mentions attenuation ponds and the culverting of the watercourse under the station. Subject to the details on this matter and ensuring that the culverting would not increase the risk of flooding upstream (i.e. towards the canal), then we would be satisfied with this approach in principle.

11.3 Relevant Legislative, Plans, Policies and Background

11.3.1 The following sections report the key legislation, plans and policies of relevance to this chapter.

Acts of Parliament and Regulations

11.3.2 A list of the key pieces of legislation relevant to the Scheme together with a brief summary are provided in Table 11.2.

Table 11.2: Key Acts of Parliament and Regulations

Act of Parliament / Regulation	Summary
Environmental	Sets out the fundamental structure and authority for
Protection Act	waste management, control of emissions and
1990	polluting of controlled waters.
Flood and Water	This Act established Lead Local Flood Authorities
Management Act	(LLFA) with responsibilities to manage local sources
2010	of flooding.
Elood Dick	Enacted to support the delivery of the Electric
Degulations 2000	Directive requirements and sufficient the requirements
Regulations 2009	Directive requirements and outlines the requirements
	for flood protection and flood risk management,
	subsequently reflected in the Flood and Water
	Management Act, 2010.
The	The Regulations set out the guidelines for
Environmental	environmental permitting, the circumstances in which
Permitting	environmental permits are required, and compliance
(England and	obligations. It is relevant to, for example, any works in
Wales)	rivers, dewatering, and any discharges to water
Regulations 2016	

(as amended)	bodies.
The Water	The provisions of WER require that environmental
Environment	objectives are set for all surface and groundwater
(Water	bodies to have regard for water quality standards and
Framework	betterment wherever possible.
Directive)	
(England and	
Wales) (WER)	
Regulations 2017	
The Floods and	To protect and improve the water environment from
Water	various sources of pollution e.g. from agriculture and
(Amendment etc.)	urban sources; it is also about protecting human
(EU Exit)	health by preventing contamination of drinking water
Regulations 2019	and bathing waters.
The Environment	The Regulations amend the Environment Protection
(Amendment etc.)	Act 1990 and other key environment legislation to
(EU Exit)	ensure they continue to function properly following
Regulations 2019	Brexit.

11.3.3 The following acts and regulations are also of relevance to this chapter:

- Land Drainage Act 1991 (as amended);
- Water Industry Act 1991;
- Water Resources Act 1991 (as amended);
- Environment Act 1995;
- Climate Change Act 2008;
- Water Act 2014; and,

 Town and Country Planning (Environmental Impact Assessment) Regulations 2017.

Plans and Policies

11.3.4 A list of the key plans and policies are presented in Table 11.3.

Plan / Policy	Summary
National Planning	The NPPF sets out the Government's planning
Policy Framework	policies for England. The NPPF is accompanied by
2021 (the NPPF)	National Planning Practice Guidance (NPPG) 'Flood
	Risk and Coastal Change' was published alongside
	the NPPF. These identify how new developments
	must take flood risk into account, including making
	allowance for climate change impacts and ensuring
	no increase in risk to people and property elsewhere.
	Regarding surface water quality, planning policies
	should prevent unacceptable levels of pollution
	adversely affecting the water environment and
	improve local water quality conditions wherever
	possible.
Preston Local	The Local Plan (Preston City Council, 2015), adopted
Plan 2012-2026	in 2015, aims to reduce the amount of development in
	high flood risk zones and help with the
	implementation of flood alleviation measures in high
	risk areas. Therefore, an assessment of the flood risk
	in the study area is required due to the proposed
	future use of the land. This plan identifies the need for
	directing development away from areas at high risk of
	flooding which is included in the site selection
	process. The plan encourages new developments to

Table 11.3: Key Plans and Policies

	integrate sustainable drainage systems (SuDS) for
	surface water management which could be
	incorporated into the green infrastructure network.
Central	The Central Lancashire Core Strategy (Preston City
Lancashire Core	Council et al., 2012), encourages sustainably
Strategy	managed growth, whilst protecting and enhancing
	green spaces and access to open countryside. Key
	policies and objectives relevant to the Scheme
	include:
	Policy 17 relates to the design of new buildings, which
	states that designs that will be adaptable to climate
	change and adopt the principles of sustainable
	development including the use of SuDS.
	Policy 18 relates to the use of green infrastructure to
	manage and improve environmental resources. The
	nalicy highlights investment and improvement of the
	policy highlights investment and improvement of the
	into Preston and securing mitigation or compensation
	where development may result in the loss or damage
	to part of the Green Infrastructure network
	to part of the Oreen initiastructure network.
	Policy 29 relates to water management, and aims to
	improve water quality, water management and reduce
	the risk of flooding. The policy highlights the need to
	slow down runoff rates in areas of development to
	reduce the risk of surface water flooding and
	encourages the use of SuDS.
	Strategic Objective SO 23 focuses on the
	management of flood risk across the area and
	directing attention to the threats posed by the River

Ribble.
Strategic Objective SO 24 focuses on reducing water
usage, protecting and enhancing Central Lancashire's
water resources and minimising pollution of water, air
and soil.

- 11.3.5 The following plans and policies are also of relevance to this chapter:
 - Central Lancashire Biodiversity and Nature Conservation Supplementary Planning Document (Preston City Council, South Ribble Borough Council and Chorley Council, 2015);
 - Ribble: Catchment Flood Management Plan (Environment Agency, 2009);
 - Lancashire and Blackpool Local Flood Risk Management Strategy (Lancashire County Council and Blackpool County Council, 2013);
 - Lancashire Area Preliminary FRA (Environment Agency, 2017b); and
 - Central Lancashire Strategic FRA (Preston City Council, South Ribble Borough Council and Chorley Council, 2007).
- 11.3.6 Further details on the above plans and policies can be found in Appendix 11.1 Flood Risk Assessment (FRA) in volume 3 of this ES.

Guidance

11.3.7 The assessment has considered relevant key guidance as listed in Table 11.4.

Table 11.4: Key guidance

Guidance	Summary
Design Manual	DMRB LA 113 (Highways England <i>et al.</i> , 2020a)
for Roads and	Provides guidance on the requirements for the
Bridges (DMRB)	assessment and management of potential
LA 113 Road	environmental impacts on the water environment.
Drainage and the	
Water	
Environment.	
DMRB LA 104	DMRB LA 104 (Highways England et al., 2020b)
Environmental	Provides guidance on the requirements and
Assessment and	procedures for the environmental assessment of
Monitoring.	projects, including reporting and monitoring of
	significant adverse environmental effects in line with
	the requirements of relevant Environmental Impact
	Assessment (EIA) legislation.
C532 Control of	Provides guidance on environmental good practice for
water pollution	control of water pollution arising from construction
from construction	activities. Addresses water quality issues from the
sites	inception of a construction project through to the
(Construction	completion of the construction stage and beyond into
Industry	decommissioning.
Research and	
Information	
Association	
(CIRIA, 2001).	
C753 SuDS	Sets out the planning, design, construction and
Manual (CIRIA,	maintenance of SuDS. Details how to maximise
2015).	amenity and biodiversity benefits and deliver key

	objectives of managing flood risk and water quality.
C750	Guidance on pumping methods used to control
Groundwater	groundwater as part of the temporary works for
control: design	construction projects.
and practice	
(CIRIA, 2016).	
C689 Culvert	Guidance on suitable methods for culvert design.
design and	Details parameters and considerations for
operation guide	environmental best practice and water conveyance.
(CIRIA, 2010).	

11.4 Methodology

- 11.4.1 The assessment methodology for this chapter is based on the following guidance:
 - DMRB LA 113 (Road drainage and the water environment, Highways England *et al.*, 2020a); and,
 - DMRB LA 104 (Environmental assessment and monitoring, Highways England *et al.*, 2020b).
- 11.4.2 The assessment of potential impacts of the proposed development on the attributes of the surface water environment in this chapter comprises:
 - surface water quality: potential impacts on the quality of the water from construction and operational runoff of pollutants, including both acute impacts from soluble pollutants and chronic impacts from sedimentbound pollutants, and from spillage events;
 - water supply: potential impacts on the quality and quantity of surface and groundwater fed water supplies;

- hydromorphology: the sensitivity of, and potential impacts upon riverine systems, including flow and sediment;
- flood risk: potential risk of flooding to the development and to third parties from all sources; and
- groundwater: potential impacts on the quality and quantity of groundwater resources, including aquifers, Source Protection Zones (SPZ), private licensed and unlicensed abstractions and discharges, Groundwater Dependent Terrestrial Ecosystems (GWDTE), and receptors which represent extents of groundwater-surface groundwater interaction.
- 11.4.3 The assessment is also supported by the FRA (Appendix 11.1) and Water Environment Regulations compliance assessment (Appendix 11.3).
- 11.4.4 Surface and groundwaters are intrinsically linked to ecological receptors, considered in Chapter 6 ;Ecology' of this ES.
- 11.4.5 Reference has been made to national and local policy documents, relevant British Standards, national guidance and other relevant information (outlined in Tables 11.3 and 11.4) in determining the assessment methodology and criteria to be used.
- 11.4.6 The assessment is based on general EIA methodology. The methodology described here sets out a list of criteria for evaluating the associated environment effects:
 - the importance (sensitivity) of the resource under consideration on a scale of importance (i.e. very high, high, medium, or low);
 - the magnitude of impact in relation to the resource that has been evaluated, quantified using the scale large, medium, small, or negligible; and

 the significance of effect using the scale major, moderate, minor, and negligible. For significant effects (moderate and major), additional mitigation could be required to reduce the significance of the effect.

Surface Water Quality Methodology

11.4.7 The assessment of impacts during operation to surface water quality is supported by the HEWRAT Assessment (Appendix 11.2).

FRA Methodology

11.4.8 The Flood Risk Assessment (FRA) has been undertaken in accordance with the NPPF, 2021. A conceptual desk-based assessment has been undertaken using readily available sources of flood risk information, supplemented by hydrological and hydraulic assessments undertaken by the Applicant to inform the design of the proposed culverts and surface water drainage system. Further details of this methodology are presented in the FRA (Appendix 11.1).

Groundwater Assessment Methodology

11.4.9 A conceptual review of hydrogeological processes has been undertaken. This is based on available baseline data received at the time of writing to determine how the construction and operation of the Scheme could impact on identified groundwater receptors. This understanding has been developed into a detailed Conceptual Site Model (CSM), using site-specific Ground Investigation data (where available) and quantitative assessments (where required) to refine the current understanding and further assess how these impacts could vary over time with the different phases of construction and operation.

Assessment Criteria

- 11.4.10 The assessment criteria outlined in Tables 11.5 to 11.7 are used to determine whether likely environmental effects are considered significant or not.
- 11.4.11 Importance (Table 11.5) should reflect the importance of features outlined in key policy documents and legislation which can include, amongst other things, its level of designation, or protection. Table 11.6 provides the criteria used to assess the potential magnitude of effect. Table 11.7 provides an illustration of how the significance of effects are derived by combining the magnitude of effect and an asset/resources sensitivity to that change.
- 11.4.12 Where the matrix indicates two alternative options (e.g. Slight/Moderate), evidence should be provided which supports the reporting of a single significance category. This would consider the importance of receptor and duration and/or extent of works.
- 11.4.13 For the purposes of this chapter, anything with a Moderate or above (i.e. Major) significance of effect (as outlined in Table 11.7) is considered to be significant.

Table 11.5: Water Environment Importance Criteria

Importance	DMRB LA 113 Typical	Applicable Scheme Examples
	Examples	
Very High	Nationally significant	Flood Risk: Highly Vulnerable development and Essential Infrastructure* at risk of
	attribute of high	flooding during the 1% Annual Exceedance Probability (AEP) (100-year) plus climate
	importance.	change (CC) event.
	Flood Risk: Essential	Groundwater: Principal bedrock and superficial aquifers. Groundwater flow and yield
	infrastructure or highly	associated with licensed groundwater abstractions. Groundwater quality within an SPZ1
	vulnerable	(Inner Protection Zone) associated with licensed groundwater abstractions. Groundwater
	development.	feeding GWDTEs with a high or moderate groundwater dependence, a high
		environmental importance and international or national value, such as Ramsar sites,
	Groundwater:	Special Areas of Conservation (SACs), Special Protection Areas (SPAs) and Sites of
	Principal aquifer	Special Scientific Interest (SSSIs).
	providing a regionally	
	important resource	Hydromorphology: WER classified water body achieving 'High' morphology status.
	and/or supporting a	Non-WER classified watercourses may be applicable if they demonstrate qualities such
	site protected under	as: a channel in stable equilibrium and exhibiting a range of natural morphological
	EC and UK legislation	features (such as pools, riffles and bars); diversity in morphological processes reflects
	LA 108 (Highways	unconstrained natural function; free from artificial modification or anthropogenic

	England, 2020c).	influence.
	Groundwater locally	
	supports GWDTE.	Surface Water Quality: WER Regulations classified water body achieving 'High'
	SPZ1.	physico-chemical and biological elements status, 'Pass' for specific pollutants and/or
		priority substances. Q95 likely to be \geq 1.0m ³ /s. Watercourse part of a site
	Surface water:	protected/designated under UK legislation (SAC, SPA, SSSI, Ramsar site). Non-WER
	Watercourse having a	Regulations classified watercourses may be applicable if part of a protected site.
	WER classification	
	shown in a River Basin	Water Supply: Water resource extensively exploited for public, private domestic and/or
	Management Plan	agricultural and/or industrial use, feeding ten or more properties.
	(RBMP) and relatively	
	high Q95 value.	
	Site and/or species	
	protected and/or	
	designated under UK	
	legislation.	
	Widely used water	
	supply.	
High	Locally significant	Flood Risk: More vulnerable development* at risk of flooding during the 1% AEP (100-

attribute of high	year) plus CC event or at risk from the emergence of groundwater at the surface.
importance.	
	Groundwater: Secondary A aquifers. Groundwater flow, yield and quality associated
Flood Risk: More	with extensive non-licensed private water abstractions (i.e., feeding ten or more
vulnerable	properties or supplying large farming / animal estates). Groundwater quality within an
development.	SPZ2 (Outer Protection Zone) associated with licensed abstractions. Groundwater
	feeding GWDTEs of low groundwater dependence, a high environmental importance and
Groundwater:	international or national value, such as Ramsar sites, SACs, SPAs and SSSIs; or
Principal aquifer	groundwater feeding highly or moderately groundwater dependent GWDTE with a
providing locally	national non-statutory UK Biodiversity Action Plan (BAP) priority.
important resource or	
supporting a river	Hydromorphology: WER classified water body achieving or having established RBMP
ecosystem.	objectives (for a later RBMP cycle) to achieve 'Good' morphology status. Non-WER
Groundwater supports	classified watercourses may be applicable if they demonstrate qualities such as: a
a GWDTE. SPZ2.	channel achieving near-stable equilibrium and exhibiting a range of natural
	morphological features (such as pools, riffles and bars); diversity in morphological
Surface water:	processes reflects relatively unconstrained natural function, with minor artificial
Watercourse having a	modification or anthropogenic influence.
WED algoritization	
WER Classification	
shown in an RBMP	Surface Water Quality: WER Regulations classified water body achieving or having
shown in an RBMP and Q95 <1.0m ³ /s.	Surface Water Quality: WER Regulations classified water body achieving or having established RBMP objectives (for a later RBMP cycle) to achieve 'Good' physico-

	Locally used water	pollutants and /or priority substances. Q95 likely to be <1.0m ³ /s. Contains species	
	supply.	protected under EC or UK legislation Ecology and Nature Conservation but is not part of	
		a protected site. Non-WER Regulations classified water bodies may be applicable if	
		protected species are present, indicating good water quality and supporting habitat.	
		Water Supply: Valuable water supply resource due to exploitation for public, private	
		domestic and/or agricultural and/or industrial use, feeding fewer than 10 properties.	
Medium	Of moderate quality	Flood Risk: Less vulnerable development* at risk of flooding during the 1% AEP (100-	
	and rarity.	year) plus CC event or with potential for groundwater flooding at the surface.	
	Flood Risk: Less	Or, Highly Vulnerable development, Essential Infrastructure or More vulnerable	
	vulnerable	development at risk of flooding during the 0.1% AEP (1000-year) flood event.	
	development.		
		Groundwater: Secondary B and Secondary Undifferentiated aquifers. Groundwater flow,	
	Groundwater: Aquifer	yield and quality associated with small scale private water abstractions (i.e. feeding fewer	
	providing water for	than ten properties). Groundwater quality within an SPZ3 (Source Catchment Protection	
	agricultural or	Zone) associated with licenced abstractions; and groundwater quality associated with	
	industrial use with	licensed abstractions for which no SPZ is defined. Groundwater feeding GWDTEs of low	
	limited connection to	groundwater dependence with a national non-statutory UK BAP priority; or groundwater	
		feeding highly or moderately groundwater dependent GWDTE sites with no conservation	

	surface water. SPZ3.	designation.
	Surface water: Watercourses not having a WER classification shown in an RBMP and Q95	Hydromorphology: Water body not classified under WER Regulations. A channel currently showing signs of historical or existing modification and artificial constraints. attempting to recover to a natural equilibrium and exhibiting a limited range of natural morphological features (such as pools, riffles and bars).
	>0.001m³/s.	number of anthropogenic pressures and/or pollutant inputs from discharges and/or surrounding land-use relative to flow volume. Q95 likely to be >0.001m ³ /s. Water Supply: Not applicable as all water supplies are always either assigned Very High
Low	Lower quality.	Flood Risk: Water-compatible development* at risk of flooding during the 1% AEP (100-
	Flood Risk: Water	year) plus CC event.
	compatible development.	Or, Less vulnerable development at risk of flooding during the 0.1% AEP Flood event.
	Groundwater:	Groundwater: Unproductive strata.
		Very poor groundwater quality and / or very low permeability make exploitation of

Unproductive Strata	groundwater unfeasible. No active groundwater supply.
Surface water: Watercourses not having a WER classification shown in a RBMP and Q95	Groundwater feeding GWDTEs of low groundwater dependence with no designation or groundwater that supports a wetland not classified as a GWDTE, although may receive some minor contribution from groundwater. Hydromorphology: Water body not classified under WER Regulations. A channel
≤0.001m3/s.	currently showing signs of extensive historical or existing modification and artificial constraints. There is no evidence of diverse fluvial processes and morphology and active recovery to a natural equilibrium.
	Surface Water Quality: Water body not having a WER Regulations classification shown in a RBMP. May have a large number of anthropogenic pressures and/or pollutant inputs from licensed discharges and/or surrounding land-use relative to flow volume. Q95 likely to be $\leq 0.001 \text{m}^3$ /s.
	Water Supply: Not applicable as all water supplies are always either assigned Very High or High importance

*as defined in the Flood Risk and Coastal Change Planning Practice Guidance to the National Planning Policy Framework (Department for Communities and Local Government, 2021)

Magnitude	DMRB LA 113	Applicable Scheme Examples	
	Criteria		
Major adverse	Results in loss of	Flood Risk: A large adverse change in flood depth (>100mm), flood extent, velocity or	
	attribute and/or quality	peak flow that may have an impact some distance upstream or downstream. Potential to	
	and integrity of the	significantly change flood frequency. Potential change in risk to life.	
	attribute.		
		Groundwater: Major or irreversible change to groundwater aquifer(s) flow, water level,	
		quality or available yield, endangering resources currently available. Irreparable impact	
		on Groundwater resource, with a major or total loss of an existing supply or supplies.	
		Changes to water table level or quality would result in a major or total change in, or loss	
		of, a groundwater dependent area, where the value of a site would be severely affected.	
		Changes to groundwater aquifer(s) flow, water level and quality would result in major	
		changes to groundwater baseflow contributions to surface water and/or alterations in	
		surface water quality, resulting in a major shift away from baseline conditions such as	
		change to WER Regulations status. Dewatering effects create significant differential	
		settlement effects on existing infrastructure and buildings leading to extensive repairs	
		required.	
		Hydromorphology: Loss of, or extensive adverse changes to the watercourse bed,	
		banks and vegetated riparian corridor resulting in changes to existing morphological	

Table 11.6: Water Environment Magnitude of Impact Criteria

• 23 •

		features and/or channel planform and cross section and/or natural fluvial processes.
		Impacts would be at the water body scale. For WER Regulations classified water bodies,
		impacts have the potential to cause deterioration on morphology status or prevent the
		achievement of 'Good' morphology status due to an increase in the extent of
		morphological pressures on the water body.
		Surface Water Quality: Construction works in-channel and/or extensive construction
		works adjacent to a watercourse which are therefore likely to risk a major, measurable
		shift from baseline water quality. Risk of adverse impacts on protected aquatic species.
		Construction works on multiple tributaries of a watercourse resulting in the risk of a
		significant cumulative impacts on water quality. Loss or extensive change to a
		designated nature conservation site. Failure of both acute-soluble and chronic-sediment
		related pollutants in HEWRAT and compliance failure with Environmental Quality
		Standards (EQS) values. Calculated risk of pollution from a spillage ≥2% annually
		(spillage assessment). For WER Regulations classified water bodies, water quality
		impacts have the potential to cause deterioration/reduction in WER Regulations
		status/classification.
		Water Supply: Long-term loss or change to water supply.
Moderate	Results in effect on	Flood Risk: A moderate adverse change in flood depth (>50mm), flood extent or peak
	integrity of attribute, or	flow that may have limited impact some distance upstream or downstream. Potential for

adverse	loss of part of attribute.	some change in flood frequency.
		Minor changes in floodplain flow pathways that increase velocity or extent of flooding but
		do not lead to new areas being inundated or new flow pathways forming.
		Groundwater: Moderate long-term or temporary significant changes to groundwater
		aquifer(s) flow, water level, quality or available yield which results in moderate long-term
		or temporarily significant decrease in resource availability. Groundwater resource
		use/abstraction is impacted slightly, but existing supplies remain sustainable. Changes to
		water table level or groundwater quality would result in partial change in or loss of a
		groundwater dependent area, where the value of the site would be affected, but not to a
		major degree. Changes to groundwater aquifer(s) flow, water level and quality would
		result in moderate changes to groundwater baseflow contributions to surface water
		and/or alterations in surface water quality, resulting in a moderate shift from baseline
		conditions upon which the WER Regulations status rests. Dewatering effects create
		moderate differential settlement effects on existing infrastructure and buildings leading to
		consideration of undertaking minor repairs.
		Hydromorphology: Adverse changes to on the water feature bed, banks and vegetated
		riparian corridor resulting in changes to existing morphological features and/or channel
		planform and cross section and/or natural fluvial processes. Impacts would be at the
		reach scale. For WER Regulations classified water bodies, impacts may increase the

• 25 •

		extent of morphological pressures. May contribute to, but not cause a deterioration of
		morphology status.
		Surface Water Quality: Construction works adjacent to a watercourse which are
		therefore likely to risk a moderate, measurable shift away from baseline water quality.
		Failure of both acute-soluble and chronic-sediment related pollutants in HEWRAT but
		compliance with EQS values. Calculated risk of pollution from spillages ≥1% annually
		and <2% annually. Partial loss in productivity of a fishery. For WER Regulations
		classified water bodies, water quality impacts may contribute to, but not cause a
		reduction in water body WER classification.
		Water Supply: Temporary disruption or deterioration in a water supply.
Minor adverse	Results in some	Flood Risk: A small or very localised adverse or beneficial change in flood depth
	measurable change in	(>5mm), extent or peak flow with no perceptible impact upstream or downstream or in
	attributes, quality or	the floodplain. Small changes in flood frequency.
	vulnerability.	
		Groundwater: Minor changes to groundwater aquifer(s) flow, water level, quality or
		available yield leading to a noticeable change, confined largely to the Scheme area.
		Changes to water table level, groundwater quality and yield result in little discernible
		change to existing resource use. Changes to water table level or groundwater quality
		would result in minor change to groundwater dependent areas, but where the value of

the site would not be affected. Changes to groundwater aquifer(s) flow, water level and quality would result in minor changes to groundwater baseflow contributions to surface water and/or alterations in surface water quality, resulting in a minor shift from baseline conditions (equivalent to minor but measurable change within WER status). Dewatering effects create minor differential settlement effects on existing infrastructure and buildings which may need to be monitored but where repairs may be avoidable.

Hydromorphology: Slight adverse changes to/impacts on the water feature bed, banks and vegetated riparian corridor resulting in changes to existing morphological features and/or channel planform and cross section and/or natural fluvial processes. Impacts would be at the local scale. For WER Regulations classified water bodies, impacts may result in a slight increase the extent of morphological pressures or occur where there are existing morphological pressures. Morphology status unaffected.

Surface Water Quality: Construction works within the watercourse catchment that may result in a risk of a minor, measurable shift from baseline water quality. Failure of either acute soluble or chronic sediment related pollutants in HEWRAT. Calculated risk of pollution from spillages ≥0.5% annually and <1% annually.

Water Supply: Not applicable as (detrimental) impacts to water supplies are only ever considered to have major or moderate adverse effects.

Negligible	Results in effect on	Flood Risk: Very limited potential for change. Flood level increase within model
	attribute, but of	tolerances (+/- 5mm). No change in flood frequency.
	insufficient magnitude	
	to affect the use or	Groundwater: Very slight change from groundwater baseline conditions approximating
	integrity	to a 'no change' situation. Dewatering effects create no or no noticeable differential
		settlement effects on existing infrastructure and buildings.
		Hydromorphology: Minimal or no measurable change from baseline conditions in terms
		of sediment transport, channel morphology and natural fluvial processes. Any impacts
		are likely to be highly localised.
		Surface Water Quality: Construction works within the watercourse catchment that are
		not anticipated to result in a risk of a change in water quality. No risk identified by
		HEWRAT (pass both acute-soluble and chronic-sediment related pollutants). Risk of
		pollution from spillages <0.5%.
		Water Supply: Not applicable as (detrimental) impacts to water supplies are only ever
		considered to have major or moderate adverse effects.

Table 11.7: Significance of Effects

Magnitude	Negligible	Minor	Moderate	Major
Importance				
Very High	Slight	Moderate or	Large or	Very Large
		Large	Very Large	
High	Slight	Slight or	Moderate or	Large or
		Moderate	Large	Very Large
Medium	Neutral or	Slight	Moderate	Moderate or
	Slight			Large
Low	Neutral or	Neutral or	Slight	Slight or
	Slight	Slight		Moderate

*Note the above matrix has been adapted from Table 3.8.1 of DMRB LA 104 and does not include a magnitude of 'No Change' or an importance of 'Negligible' as these categories are not included in DMRB LA 113.

Embedded Mitigation and Good Practice

- 11.4.14 The assessments presented in Section 11.7 and 11.8 of this chapter take into account embedded mitigation, which are inherent to the design, and the implementation of good practice measures.
- 11.4.15 An overview of the embedded mitigation measures considered relevant to the water environment are detailed prior to the assessment of construction and operation impacts in Sections 11.7 and 11.8.
- 11.4.16 The need for any additional discipline-specific essential mitigation identified as a result of the assessment is then set out separately in Section 11.10.

Desk-based assessment

- 11.4.17 The desk-based assessment considered relevant guidance (including DMRB LA 113), and legislation, as provided in Table 11.3 and 11.4.
- 11.4.18 In addition, the data sources outlined in Table 11.8 have informed the assessments.

Data Source	Details
British Geological	Preston 1:50,000 bedrock and drift geological map
Survey (BGS)	(BGS, 2012).
	BGS Onshore GeoIndex online application (BGS,
	2020a).
	BGS Lexicon of Named Rock Units (BGS, 2020b).
	BGS Groundwater Vulnerability Dataset (BGS,
	2020c).
Defra Magic Maps	Online mapping tool containing multiple discipline-
Online Application	specific datasets, including:
(Defra 2021)	
	Groundwater features on OS maps
	Aquifer designation
	Designations (protected areas)
	Habitate and Spacias
	Eastures of watereouroes not visited on site
	reatures of watercourses not visited on site

Table 11.8: Data sources

	surveys (OS mapping and aerial imagery).
Enviro Insight	Information on abstractions, discharges,
report: Cottam	aroundwater flooding susceptibility and GWDTEs.
Parkway	
(Groundsure 2020)	
(Croanacaro, 2020)	
The Environment	Information of abstractions and aquifer
Agency (EA)	classifications (Environment Agency, 2017a).
	Source Protection Zones (Environment Agency, 2018).
	Environment Agency Flood Map for Planning
	(FMfP) (Environment Agency, 2021a).
	Environment Agency Risk of flooding from Surface Water mapping (RoFSW) (Environment Agency, 2021b).
	Recorded Flood Outlines.
	Information on WER Regulations classified water bodies, Catchment Data Explorer (Environment Agency, 2021c).
	The Water Quality Archive (WIMS) (Environment Agency, 2021d).
Central Lancashire	Groundwater flooding events.
Strategic FRA	
(Preston City	
Council, South	
Ribble Borough	

Council and Chorley	
Council, 2007)	
Factual report on	Ground Investigation Factual Report.
Ground	
Investigation (GI)	
carried out at	
Preston Western	
Distributor	
Structures (IFA,	
2015 and 2016)	
Cottam Parkway	Ground Investigation Report (GIR) for site
Access Bridge and	including groundwater levels and monitoring with
Road Preliminary	data abstracted from the Factual Report
Sources Study	undertaken for the Preston Western Distributor
Report (Lancashire	Structures (IFA, 2015 and 2016).
County Council,	
2021)	
Cottam Parkway:	Ground Investigation Report (GIR) for the site,
Access Road and	including site-specific groundwater data.
Car Park Combined	
GIR report	
(Lancashire County	
Council, 2021a)	
Cottam Parkway:	
Access Bridge and	
Embankment GIR	
report (Lancashire	
County Council,	
20216)	
20210)	

Environmental Statement: Chapter 11 Water Environment

Wallingford	Low Flow data (Q95) for water features purchased
HydroSolutions	from WHS (2021).
(WHS)	
National Library of	Historical Maps of the study area.
Scotland, side by	
side mapping (NLS,	
2021).	

study area

11.4.19 The different components of the water environment assessed in this chapter have been assigned different study areas according to the requirements of the technical assessment methodology applied (Table 11.9).

Table 11.9: Summary of study areas

Assessment Area	Justification
500m buffer in all	1.0km downstream of
directions around	proposed outfalls so applicable
the provisional	and appropriate HEWRAT
Scheme boundary.	assessments can be
1.0km downstream	undertaken.
of proposed outfalls	
for Protected areas.	
500m upstream and	To ensure fluvial impacts from
downstream of	the effects of construction and
provisional Scheme	operation are identified in both
boundary.	the up- and downstream
	directions on sensitive
	Assessment Area 500m buffer in all directions around the provisional Scheme boundary. 1.0km downstream of proposed outfalls for Protected areas. 500m upstream and downstream of provisional Scheme boundary.

		receptors within watercourses.
Flood risk	500m buffer in all	Whilst the focus of the
	directions around	assessment is the planning
	the provisional	application boundary, and
	Scheme boundary	areas that are hydraulically
	extended by up to	linked, this has been extended
	1.0km downstream	by 500m in all directions and
		up to 1.0km downstream to
		ensure that sensitive receptors
		are identified.
Groundwater	1.0km buffer in all	Whilst the focus of the
	directions around	assessment is the planning
	the provisional	application boundary, and
	Scheme boundary	areas that are
		hydrogeologically linked, this
		has been extended by 1.0km
		in all directions to ensure that
		sensitive receptors are
		identified.

Site Walkover and Surveys

- 11.4.20 A combined flood risk and hydromorphology site walk over survey was undertaken in April 2021.
- 11.4.21 The purpose of the hydromorphology survey was to identify existing hydromorphological baseline conditions of watercourses potentially impacted by the Scheme and to characterise any morphological risks and/or pressures which could impact on the Scheme.

- 11.4.22 The hydromorphology survey extents included observation of a 500m reach of the Central Watercourse.
- 11.4.23 At the time of writing, no site visits were undertaken from a specific groundwater or surface water perspective.

11.5 Assumptions and Limitations

11.5.1 Any assumptions or limitations made/encountered during the preparation of this chapter are detailed under the discipline specific heading below.

Surface Water

- 11.5.2 The data that have informed the HEWRAT tool are derived from several English motorways, and the tool is designed to be used where traffic volumes experienced regularly exceed 10,000 Annual Average Daily Traffic (ADDT). The traffic model provided for the Scheme details expected traffic volumes will be considerably lower than 10,000 AADT. As such, the results from the HEWRAT assessments undertaken for the Scheme are likely to be conservative. The rainfall data used within the tool are taken from the nearest available rainfall site, Warrington, SAAR 830mm, which is approximately 37km south from the Scheme.
- 11.5.3 The quoted SuDS treatment efficiencies taken from CIRIA (2015) and National Highways (2020b) are derived from limited studies, and do not account for the length or size of certain SuDS components.
- 11.5.4 Existing water quality within receiving watercourses is not directly taken into consideration in the HEWRAT routine runoff model.
- 11.5.5 Further limitations relating to the water quality assessments undertaken are also provided in the HEWRAT Appendix (Appendix 11.2).

- 11.5.6 The Western Watercourse, Lady Head Runnel and Savick Brook have limited interaction with the Scheme and were not surveyed in detail as part of the hydromorphological site survey. A desk-based study has been undertaken to provide a baseline characterisation of these watercourses using the sources outlined in Table 11.8.
- 11.5.7 Construction drainage outfall locations are unknown at the time of writing. It is assumed that construction drainage will be discharged to the three ordinary watercourses identified within Section 11.6 Baseline.

Flood Risk

11.5.8 No specific limitations or assumptions have been applied to the FRA. However, this assessment is reliant on the accuracy of third-party data and information required including a hydrological and hydraulic assessment undertaken by the Applicant to inform the culvert and drainage system designed.

Groundwater

- 11.5.9 The impact assessment has been prepared based on the GI and laboratory results made available at the time of writing, which have been undertaken according to established protocols. It is possible that the GI and assessment carried out, whilst appropriate to comply with the agreed brief, may not indicate the full extent of conditions beneath the site. Hence, there might be areas of the site, which, if investigated further, may differ from the CSM upon which the assessment is based.
- 11.5.10 Multiple aspects pertaining to the outline design of the Scheme are currently unknown at this stage, and include but are not limited to:
 - formation/invert levels for cuttings, subsurface earthworks, and other structures (e.g. access road bridge) and highway alignments;
- ground improvement schedule (including foundations, piles, cut-off walls, retaining walls etc.), and excavations depths/locations for each. It is presently assumed piling depths for key structures (e.g. overhead lines, platform, platform footbridge, canal bridge etc.) are no greater than 10m in depth;
- detailed temporary works information (including the need for excavations for temporary access tracks, enabling works, soil stripping etc., temporary dewatering requirements, storage areas, stockpile mounds, landscaping); and
- detailed Drainage Strategy (including the excavation depth of attenuation ponds, permanent dewatering requirements, and the need to discharge to ground etc.). It is assumed all attenuation ponds will be lined and no discharge to ground is required.
- 11.5.11 The outline design for the Scheme does however indicate that there is no requirement for borrow pits, and therefore no borrow pit dewatering impact assessment has been undertaken.
- 11.5.12 No dewatering risks assessment or foundation and piling risk assessments have been completed. Where significant effects are identified it is assumed the Contractor will undertake these based on forthcoming detailed design and ground investigation information to determine any additional mitigation that is required.

11.6 Baseline Description and Evaluation

11.6.1 This section details the Water Environment baseline for the assessment area and identifies assets where there is potential for significant effects to arise. Table 11.9 provides an overview of the study areas adopted for the Water Environment baseline and assessment. These are presented in Figure 11.1 and Figure 11.2 in Appendix 11.4. 11.6.2 No surface water supplies have been identified within the study area, therefore surface water supply is scoped out of this assessment.

Surface Waters - Overview

- 11.6.3 The study area consists of three minor surface water features within the Savick Brook catchment, the hydrological setting of which are detailed above in Section 11.1. The Savick Brook (also referred to as Millennium Ribble Link) catchment within the study area covers a mix of agricultural land, primarily to the west, and urbanised residential areas to the north-east and north of the Lancaster Canal.
- 11.6.4 Diffuse run-off may occur from land-use within the catchment and from landuse adjacent to the Lancaster Canal. The agricultural land-use may be a source of sediment, dissolved organic carbon, nutrients and biological pollutants. Run-off from urban development (from the existing road network, railway and residential areas) is likely to include suspended solids and contaminants bound to them (such as heavy metals and phosphorus); deicing salt (chloride), oil and related compounds.
- 11.6.5 There are no protected areas or Nitrate Vulnerable Zones (NVZ) identified within the study area (Defra, 2021).
- 11.6.6 During the hydromorphology site visit, a number of existing field drains were noted discharging into the Central Watercourse, upstream of the field culvert. No extensive site surveys have been undertaken on the Western Watercourse and Lady Head Runnel. Therefore, full details of all existing outfalls, within the study area, discharging into these watercourses are not known.

Central Watercourse

11.6.7 The Central Watercourse is a minor watercourse which drains in a general north to south direction toward Savick Brook and is not designated under

WER Regulations. The catchment covers a mix of agricultural land, primarily to the west, and urbanised residential areas to the north-east and north of the Lancaster Canal. Riparian vegetation in reaches upstream of the Preston Fylde Junction to Blackpool North line culvert consists of agricultural grass. Downstream, a continuous strip of mature riparian vegetation lines the channel banks which was observed to be providing additional bank stability.

- 11.6.8 Within the study area, the watercourse displays a low sinuosity, straightened planform and deepened trapezoidal channel cross section, and shows extensive signs of historical modification to follow field boundaries. The realignment to follow field and property boundaries has existing modifications including three culverts. Bed material consists of silt, sand and gravels, with limited coarse material. Bank material consists of poorly consolidated silts, sands and rare gravels overlain with grassed topsoil. Bedforms and processes within the channel are homogeneous. It is likely that the channel is ephemeral during incremental dry periods. Flows within the watercourse on the day of survey were low and unenergetic.
- 11.6.9 The watercourse is culverted multiple times within the study area including partially below the field immediately upstream of the Preston Fylde Junction to Blackpool North line railway embankment, below the Lancaster Canal and below the Fylde Line/Blackpool Branch Line.

Attribute	Description Summary	Importance	Justification
Surface Weter	EA Overall Status: Net	Madium	
Surface water	EA Overall Status: Not	Medium	NON-WER
Quality	Classified under WER		Regulations
	Regulations.		water body.
			Q95 >
	Low flow value (Q95):		0.001m³/s
	0.002m³/s*. (WHS,		
	2021)		

Table 11.10: Summary of baseline importance for the Central Watercourse

	Anthropogenic		
	pressures, includina		
	culverted sections, and		
	pollutant inputs from		
	discharges and		
	surrounding land-use.		
	U U		
Hydromorphology	Trapezoidal channel	Low	Not classified
	with no discernible		under the WER
	hydromorphological		Regulations.
	features or processes.		Shows
	Channel realigned and		extensive signs
	modified including three		of historical
	culverts.		modification.
			Lacking
			morphology;
			processes
			homogeneous
Flood Risk	Flood Zone 1.	High	Flood risk to
			essential
	A hydraulic assessment		infrastructure
	confirms that the		during 1% AEP
	existing 975mm culvert		flood event.
	beneath the Preston		
	Fylde Junction to		
	Blackpool North line		
	has capacity to convey		
	the 1% AEP fluvial flood		
	flow with 70% increase		
	due to climate change.		
	Depairs fleed tisk		
	Baseline flood risk		

capacity of the 225mm	
culvert upstream of the	
railway, which would	
surcharge during the	
1% AEP flood event.	
Flooding would likely be	
limited to agricultural	
land but may pose a	
risk to the railway.	

* This value was calculated by (catchment) scaling Low Flow data generated for Lady Runnel Head watercourse, provided by WHS (2021).

Western Watercourse

- 11.6.10 The Western Watercourse is a minor watercourse which drains from north to south discharging to Savick Brook downstream of the Scheme boundary. The watercourse is not classified under WER Regulations and receives additional flows from a minor tributary at 348500, 430864 and from the Central Watercourse at 348705, 430572.
- 11.6.11 The catchment consists of agricultural land. Riparian vegetation upstream of the Preston Fylde Junction to Blackpool North line culvert consists of grass. Downstream of the Fylde Line/Blackpool Branch Line and extending to the Savick Brook, a continuous strip of mature riparian vegetation lines the channel banks.
- 11.6.12 Within the study area, the watercourse displays a low sinuosity, straightened planform and shows extensive signs of historical modification to follow field boundaries. The realignment follows field and property boundaries, and has existing modifications including two culverts. Desk-based analysis suggests that the Western Watercourse displays a similar planform and fluvial characteristics to the Central Watercourse, where bed material is similar, with limited coarse material. Features and processes are absent.

11.6.13 The watercourse is culverted multiple times within the study area including below the Lancaster Canal and Preston Fylde Junction to Blackpool North line.

Attribute	Description Summary	Importance	Justification
Surface Water	EA Overall Status: Not	Medium	Non-WER
Quality	Classified under WER		Regulations
	Regulations.		water body.
			Q95 ≥
	Low flow value (Q95):		0.001m³/s
	0.001m³/s* (WHS,		
	2021)		
	Anthropogenic		
	pressures, including		
	culverted sections, and		
	pollutant inputs from		
	discharges and		
	surrounding land-use.		
Hydromorphology	Low sinuosity over	Low	Non-WER
	straightened channel		Regulations
	with likely no		water body.
	discernible		Shows
	hydromorphological		extensive signs
	features. Channel		of historical
	realigned and modified		modification.
	including two culverts.		
Flood Risk	Flood Zone 1, Fluvial	High	Flood risk to
	flood risk has is inferred		local transport
	from the EA RoFSW		infrastructure

Table 11.11: Summary of baseline importance for the Western Watercourse

Attribute	Description Summary	Importance	Justification
	mapping, which		during 1% AEP
	suggests the		flood event
	watercourse poses a		
	risk of flooding to		
	Sidgreaves Lane during		
	the 3.33% AEP flood		
	event.		

* This value was calculated by (catchment) scaling Low Flow data generated for Lady Runnel Head watercourse, provided by WHS (2021).

Lady Head Runnel

- 11.6.13 Lady Head Runnel is a minor watercourse which drains from north to south upstream of the Lancaster Canal before draining south-west downstream of the Fylde Line/Blackpool Branch Line, discharging to Savick Brook. Lady Head Runnel is not classified under WER Regulations.
- 11.6.14 The catchment upstream of the Lancaster Canal consists of urban land associated with residential developments and the existing Cottam Way road network. Downstream of the canal, the channel is culverted below a recreational sports ground prior to the culvert below the Fylde Line/Blackpool Branch Line and Lea Road. Downstream of the railway line, catchment landuse consists of a mix of agricultural land to the east and recreational land consisting of a golf course to the west. Mapping shows the watercourse forms the boundary between the golf course and agricultural fields.
- 11.6.15 Riparian vegetation in reaches downstream of the Preston Fylde Junction to Blackpool North line culvert consists of a narrow band of continuous mature deciduous trees. Within the study area, the watercourse displays a low sinuosity, straightened planform and shows extensive signs of historical modification following field boundaries. The realignment follows field and

property boundaries, and has existing modifications, including extensive culverting downstream of the canal. Downstream of Lea Road the watercourse displays a low sinuosity planform aligned to follow field boundaries.

Attribute	Description Summary	Importance	Justification
Surface Water	EA Overall Status: Not	Medium	Non-WER
Quality	Classified under WER		Regulations
	Regulations.		water body.
			Q95 ≥
	Low flow value (Q95):		0.001m³/s.
	0.001m³/s (WHS,		
	2021).		
	Anthropogenic		
	pressures, including		
	culverted sections, and		
	pollutant inputs from		
	discharges and		
	surrounding land-use.		
Hvdromorphology	Low sinuosity channel:	Low	Non-WER
, , , , , , , , , , , , , , , , , , , ,	few features/processes.		Regulations
	Channel realigned and		water body.
	modified including		Shows
	extensive culverting		extensive signs
	south of canal.		of historical
			modification.
Flood Risk	Flood Zone 1. Fluvial	High	Flood risk to
	flood risk is inferred		local transport
	from the EA RoFSW		infrastructure

Table 11.12: Summary of baseline importance for the Lady Head Runnel

mapping, which	during 1% AEP
suggests the	flood event.
watercourse poses a	
risk of flooding to Lea	
Road during the 3.33%	
AEP flood event.	

Lancaster Canal

- 11.6.16 The Lancaster Canal is an artificial water body which runs from west to east across the study area to the north of the Scheme. The canal is crossed directly by the Scheme boundary and by the aforementioned surface water features within the study area. The canal is classified under WER Regulations as an artificial waterbody with overall Moderate ecological status. Physico-chemical quality elements are classified as High. Biological elements and specific pollutants are not assessed (EA, 2021c).
- 11.6.17 The canal is crossed by existing infrastructure including the Preston Western Distributor Road (PWDR) to the west.
- 11.6.18 As the canal is an artificial waterbody with no hydromorphological features or processes, it has been scoped out of further hydromorphological assessment.

Attribute	Description Summary	Importance	Justification
Surface Water	EA Overall Status:	Very High	WER
Quality	Moderate (2019).		Regulations
			classified water
	EA physico-		body achieving
	chemical/biological		'High' physico-

Table 11.13: Summary of baseline importance for the Lancaster Canal

	elements/specific		chemical
	pollutants status: High/		status.
	Not Assessed / Not		
	Assessed (2019).		
	Artificial water body and		
	pollutant inputs from		
	discharges and		
	surrounding land-use.		
Flood Risk	Records provided by	High	Historical flood
	the Canal and River		records of
	Trust identify historical		floodwater
	overtopping and breach		overtopping
	events along the		canal and
	Lancaster Canal.		flooding local
			transport
	However, the risk of		infrastructure.
	culvert collapses and		
	breaches adjacent to		
	the Scheme have been		
	assessed to be low due		
	to Canal being in cut.		
	Only overtopping		
	events driven by pluvial		
	and groundwater		
	ingress have occurred		
	within the vicinity of the		
	Scheme resulting in		
	flooding of Lea Lane		
	and other neighbouring		
	roads to the north of the		

Canal.	

Surface Water Runoff and Areas of Localised Ponding

11.6.19 Environment Agency Risk of flooding from Surface Water (Environment Agency, 2021b) mapping indicates that the risk of surface water flooding across the site area is generally very low (less than 0.1% AEP). However, there are some localised areas with a medium (3.33% to 1% AEP) to high (more than 3.33% AEP) risk. These are largely restricted to isolated pockets of land associated with local depressions or existing seasonal ponds. Mapping indicates the pond features have no outflow and are unlikely to display any natural hydromorphological features or processes. They have therefore been scoped out of further hydromorphological assessment.

Attribute	Description Summary	Importance	Justification
Flood Risk	The risk of surface	Low	Flood risk to
	water flooding across		localised areas
	the site area is		of Pastoral
	generally very low (less		agricultural
	than 0.1% AEP).		land during
			3.33% AEP
	However, isolated		flood event.
	areas of surface water		
	ponding are predicted		
	within areas of		
	agricultural land during		
	the 3.33% AEP flood		
	event.		

Table 11.14: Summary of baseline importance for surface water runoff

Savick Brook

- 11.6.20 Savick Brook is a Main River watercourse forming a tributary to the River Ribble at 348125, 428822. The watercourse is located approximately 1.5km from the Scheme and receives flows from minor watercourses (Western Watercourse, Central Watercourse and Lady Head Runnel).
- 11.6.21 Savick Brook is designated as Heavily Modified with an overall Moderate ecological status under WER Regulations. Physico-chemical quality elements and biological elements are both classified as Moderate for 2019. There is no recent specific pollutants status available. Hydromorphological supporting elements are classed as Supporting Good but have not been accessed since 2014. RBMP Hydrological Supporting Elements for 2027 are not assessed (EA, 2021c).
- 11.6.22 Desk-based analysis indicates the channel forms a low sinuosity planform downstream of the study area. The watercourse supports Good hydromorphological designation suggesting it displays a range of diverse hydromorphological features and processes.

Attribute	Description Summary	Importance	Justification
Surface Water	EA Overall Status:	High	Species protected
Quality	Moderate (2019).		under EC
			legislation but is
	EA physico-		not part of a
	chemical/biological		protected site.
	elements/specific		
	pollutants status:		Q95 0.1m³/s.
	Moderate/		
	Moderate/ Not		

Fable 11.15: Summar	y of baseline importance	for Savick Brook
---------------------	--------------------------	------------------

	Assessed (2019)		
	Low flow value		
	(Q95): 0.056m³/s		
	(WHS, 2021).		
	Granted European		
	Protected Species		
	Applications		
	(Amphibian, Bat)		
	within catchment.		
	No designated		
	protected areas		
	(Defra, 2021).		
	Anthropogenic		
pressures,			
including culverted			
	sections, and		
	pollutant inputs		
	from discharges		
	and surrounding		
	land-use.		
Hudromorphology	Overall Mederate	Lliab	Whilet the Seheme
Hydromorphology		підп	is located
			approximatoly
	Supports Good		approximately
	Supports Good		weterbedy imposte
			waterbody, impacts
	Regulations.		
			transferred
			downstream to the

			Savick Brook. The
			watercourse is
			designated as
			Heavily Modified
			with a Good overall
			ecological status
			and Supports Good
			hydromorphological
			regime. RBMP
			objective for
			hydromorphological
			Supporting
			Elements 2027 is
			not assessed.
Flood Risk	Whilst the Scheme	Very High	Flood risk to
	is remote from flood		essential
	risk from this		infrastructure
	source, the A583,		during 1% AEP
	Blackpool Road is		flood event.
	within Flood Zone 3		
	associated within		
	Savick Brook.		

Groundwater

Regional Geology

11.6.23 Superficial deposits of a considerable thickness overlie the bedrock geology across the entire 1.0km study area. The superficial geology local to the study area can be seen in Figure 11.3in Appendix 11.4.

- 11.6.24 According to BGS mapping much of the study area including the location of the railway station is underlain by glacial till deposits of Devensian age (BGS, 2020a), including impermeable clay deposits.
- 11.6.25 More recent deposits of Holocene age including head, lacustrine, tidal flat and alluvial deposits can be found within the study area (BGS, 2020a). Head deposits are situated in thin strips in the north and south of the study area. These deposits consist of clay, silts, sands and gravels. Lacustrine deposits are sporadically situated in the northwest of the study area, and comprise clays, silts and sands (BGS, 2020b).
- 11.6.26 Tidal flat deposits comprised of silt, clay and sand are found to the southwest of the study area (BGS, 2020a). Alluvial deposits are situated to the south of the study area and likely are associated with the Savick Brook. Alluvial deposits generally consist of sands, clays and gravels.
- 11.6.27 BGS mapping shows bedrock at the location of the study area is entirely comprised of Triassic-aged sandstones of the Sherwood Sandstone Group (BGS, 2012 and BGS, 2020a).

Site-Specific Geology

- 11.6.28 Two separate GIR reports have been produced as part of the Scheme with the ground investigation (GI) undertaken in March 2021, one for the Access Road Bridge and Embankment Combined Ground Investigation Report (LCC, 2021b) and the other for the Access Road and Car Park Ground Investigation Report (LCC, 2021a).
- 11.6.29 Both GI confirmed the presence of glacial till across the study area with thicknesses ranging from 15.3 to 17.65m, where proven. Sand layers within the glacial till were identified in both areas of GI.
- 11.6.30 Both GIR reports record a layer of cohesive upper glacial till, underlying the topsoil. The cohesive layers are described as sandy, slightly gravelly, silty

clays with the granular layers comprised mainly of clayey sand. In the south where the car park is proposed, layers of granular glacial till are recorded within the cohesive layer. The granular layers were found to be between 0.2 to 0.45m thick and found to be relatively shallow in nature. A summary of the geology in the Access Road and Car Park GIR (LCC, 2021a) is shown in Table 11.16.

Stratum	Depth (mbgl)	Permeability data (if available)
Topsoil	0.20-0.30	NA
Upper Cohesive Glacial Till	0.20-6	6.23X10-8 m/s
		4.83x10-8 m/s
Granular Glacial Till	0.75-3.10	1.41x10-7 m/s

- 11.6.31 In the northern GIR conducted for the access road bridge and embankment two distinctive granular glaciofluvial deposits layers have been identified between and below the upper and lower cohesive glacial till. These layers have not been identified in the south of the site, however in this area the GI did not reach the depths where the glaciofluvial deposits were recorded, so may be present at depth in the car park location. A summary of the geology identified in the Access Road Bridge and Embankment GIR (2021) can be found in Table 11.17.
- 11.6.32 During the GI for the access bridge and embankment the lower glaciofluvial deposits were encountered just above the bedrock. A preliminary GIR produced by Lancaster County Council for the site found that these glaciofluvial deposits were more extensive to the west in BH221 to BH224

(LCC, 2021) with depths between 16.90 to at least 20.45mbgl. More details of this Preliminary GIR can be found in Section 11.6.44.

Stratum	Depth (mbgl)	Permeability Data (If Available)
Topsoil	0.20-0.60	NA
Cohesive Upper glacial Till	0.20-12.80	Not available
(UGT)		
Granular Upper	11.30-15.00	Not available
Glaciofluvial Deposits		
(UGD)		
Cohesive Lower Glacial Till	13.70- 16.50	Not available
(LGT)		
Granular Lower	16.30-17.90	Not available
Glaciofluvial Deposits		
(LGD)		

- 11.6.33 As part of the GI for the Access Road and Car Park (LCC, 2021a) falling head tests were undertaken in the glacial till (both cohesive and granular) at three locations to determine permeability. The results show a very slow response from the glacial till indicating very low permeability, both in the cohesive and granular strata. No permeability testing was undertaken as park of the Access Bridge and Embankment GIR. The results of these tests are shown in table 11.17 above.
- 11.6.34 Where encountered during the GI bedrock across the study area was recorded between 15.6 and 18.15mbgl, underneath a thick layer of cohesive

glacial till containing two layers of glaciofluvial deposits. The Lower Glaciofluvial Deposits were found to be directly overlying the bedrock. The top of the sandstone where encountered is described as being lightly to heavily weathered across the site. The thickness of the bedrock was not proven during the GI. The bedrock geology local to the study area can be seen in Figure 11.4 in Appendix 11,4.

Aquifer Classification

- 11.6.35 The Sherwood Sandstone Group is classified as a Principal bedrock aquifer (Defra, 2021). The Principal bedrock aquifer underlies the entire study area however, it is overlain by a considerable thickness of superficial glacial deposits. This aquifer is part of the Fylde Permo-Triassic Sandstone Aquifers WER Groundwater body (Water Body ID: GB41201G100500), which has a Poor overall rating, with a Poor quantitative status but a Good chemical rating.
- 11.6.36 A band of Superficial Secondary A aquifer comprised of alluvium runs in a north-east to south-west orientation across the south-east corner of the study area (Defra, 2021). It is likely that the alluvium is a fluvial deposit consisting of sands and gravels of a higher permeability which are associated with both the watercourse channel and flood plain of the Savick Brook. The lacustrine deposits within the study area are also classified as a Secondary A Aquifer, which likely relates to the higher permeability sands.
- 11.6.37 Most of the superficial deposits across the study area are associated with impermeable glacial till. This is designated as a Secondary (undifferentiated) aquifer. Any groundwater that is present within the glacial till is likely to be perched within more permeable, discontinuous, material in which flow is restricted. The head deposits are also classified as a Secondary (undifferentiated) aquifer.
- 11.6.38 The tidal flat deposits are classified as being unproductive strata to the west. However, considering that these deposits within the study area are adjacent

to alluvium and follow the watercourse then it is likely that they are more sand than mud dominated due to inputs from the river. The most eastern extent of these deposits along the Savick Brook are therefore classified as a Secondary A aquifer.

11.6.39 The glacial till within the study area is of significant thickness of up to 17.75m where proven, and likely to offer considerable protection to the underlying Sherwood Sandstone Group Principal aquifer.

Groundwater Levels and Flows

Site-Specific GI

11.6.40 11.6.41 During the two 2021 Ground Investigations (LCC, 2021a; 2021b) groundwater strikes were encountered in five window samples, with groundwater levels ranging from 0.95mbgl to 4.10mbgl. Groundwater strikes were also encountered in 5 cable percussion boreholes ranging from 1.40 to 13.20mbgl. All six trial pits were terminated at 2mbgl, with all of them remaining dry. A summary of groundwater strikes encountered during the GI are shown in Table 11.18. There was little rise, if any, recorded in groundwater levels across the site after the initial strike. The groundwater seepages were encountered in localised lenses of sands, gravels and silts across the three different geologies. A location plan of these GI locations is available in Figure 11.3.

Borehole	Water Strike	Rose to	Strike	Comment
ID	Depth (mbgl)	(mbgl)	Geology	
WS03	1.10	NA	Sand	Slight
				seepage
WS05	1	NA	Sand	NA

Borehole	Water Strike	Rose to	Strike	Comment
ID	Depth (mbgl)	(mbgl)	Geology	
WS06	0.95	NA	Sand	NA
WS12	4.10	NA	Clay	Slight
				seepage
WS14	3.5	NA	Clay	Slight
				seepage
CP02	13.20	NA	Sand- UGD	Slight
				seepage
CP03	11.70	11.70	Silt- UGD	Slightly wet
				sands
	12.90	12.90	Silt- UGD	Slightly wet
				sands
CP04	2.70	2.70	Sand- UGT	Strike
	8.30	8.10	Silt- UGT	Strike
	12.90	12.90	Sand- UGD	Strike
	16.30		Sand- LGD	
CP05	2.20	2.20	Gravel - UGT	Strike
	7.60	7.20	SAND - UGD	Strike
	12.50	12.50	SAND - UGT	Strike

Borehole	Water Strike	Rose to	Strike	Comment	
ID	Depth (mbgl)	(mbgl)	Geology		
CP06	1.40	1.40	SAND - UGT	Water strike in	
				sand lens	
	2.80	2.50	SAND - UGT	Strike	
NB:					
UGD- upper glaciofluvial deposits					
LIGT- Lipper Glacial Till					
LGD- Lower Glaciofluvial Deposits					

- 11.6.41 Subsequent monitoring was undertaken in four window samples (WS05, SW09, WS15 and WS18) and four boreholes (CP01, CP03, CP04 and CP06) over a period of six months from April 2021. The results from the window samples show groundwater levels vary between 0.27-2.88mbgl, with the biggest variation observed in WS18 where a difference of 2.3m in groundwater levels was recorded. In the boreholes, groundwater levels were found to between 9.03mbgl and 13.95mbgl, with the biggest variation in CP04 where a difference of 4.44m was observed. Monitoring results from across the site are shown in Table 11.19.
- 11.6.42 It should be noted that site specific monitoring data are only available for six months so will not reflect any seasonal variation in groundwater levels.

Borehole	Response	Response Stratum	Minimum	Maximum
ID	Zone (mbgl)		Depth	Depth
	(mAOD)		(mbgl)	(mbgl)
			(mAOD)	(mAOD)
				, , ,
WS05	1-4 (20.60-	Clay and sand	0.27	1.74
	17.60)		(21.33)	(19.86)
	,		· · · ·	
WS09	0.5-3 (20.23-	Clay	0.33	1.65
	17.73)		(20.40)	(19.08)
WS14	1-6 (15.89-	Clay	0.46	1.47
	10.89)		(16.43)	(15.42)
WS18	0.5-3 (18.87-	Clay	0.58	2.88
	16.47)		(18.90)	(16.60)
CP01	1-18 (21.50-4.5)	Clay/silt/sandstone	9.03	11.51
			(13.47)	(10.99)
CP03	1-16.50 (21.63 –	Clay/silt/sandstone	13.40	13.95
	6.13)		(9.24)	(8.69)
CP04	1-17 (21.97-	Clay/silt/sand	9.17	13.61
	5.97)		(13.80)	(9.36)
CP06	1-17 (21.50-	Clay/silt/sand/sandstone	2.73	7.38
	5.50)		(19.52)	(14.87)

11.6.43 Parts of the Ground Investigation carried out at Preston Western Distributor Structures (IFA, 2015 and 2016) have been used as part of the Cottam Parkway Access Bridge and Road Preliminary Sources Study Report (Lancashire County Council, 2021). This study represents the subset of investigation locations that are most relevant to the Scheme. The investigation locations used for the study relate to four cable percussion boreholes (BH221-224) and one window sample (WS227), which were drilled within the location of the proposed bridge over the Lancaster Canal.

11.6.44 The boreholes (BH221-224) were drilled to depths between 20.30mbgl (below ground level) and 22.80mbgl while the window sample (WS227) was drilled to 5.45mbgl. Within these boreholes water strikes were recorded between 12.30mbgl (8.92m AOD (Above Ordnance Datum)) and 18.20mbgl (3.19m AOD) with seepages found from 3.1mbgl (18.12m AOD) (see Table 11.20).

Table	11.20:	Summary	of	groundwater	strikes	from	the	Preliminary	Source
Study	Report	: (LCC , 202 [,]	1).						

Borehole ID	Water Strike Depth (mbgl)	Depth after 20 Mins (mbgl)	Comment
BH221	18.2	18.2	Strike
BH222	17.3	17.3	Seepage
BH223	13	11.3	Strike
	17.1	16.7	Strike
BH224	3.1	3.1	Seepage
	12.3	10.7	Strike
	16.9	15.1	Strike

11.6.45 Subsequently piezometers were installed in the four boreholes with the first measurements taken on the 3 December 2014 and recorded every year until18 October 2017, and after this yearly until 30 January 2019. From

monitoring results in the Preliminary Source Study Report (LCC, 2021), groundwater levels were found to be variable within the boreholes with BH221 recording a maximum value of 4.18mbgl and a minimum of 12.76mbgl, while BH224 recorded a maximum at 0.00mbgl and a minimum of 12.72mbgl. This indicates the variable nature of the confined groundwater within the glacial till and shows that at times the groundwater could potentially reach the surface when an overlying confining clay layer is penetrated and artesian pressures are released. However, the baseline risk of groundwater flooding at the site is considered to be low and the importance of groundwater flooding as a feature of the water environment is also low.

Regional Groundwater Levels and Flows

- 11.6.46 In addition to the site-specific GI groundwater levels from the GI works for the Preston Western Distributor Structures (PWDS) (IFA, 2015 and 2016) have also been assessed for the purpose of this report to understand the wider more regional groundwater conditions. Out of 67 boreholes, 45 boreholes identified have monitoring installations within the glacial till and are situated within the study area (within 1.0km of the proposed station location) as presented in Figure 11.3, Figure 11.4 and Figure 11.5. The groundwater levels have been collected using a manual dip meter between the period of November 2014 to September 2018. Groundwater level data have been generally recorded monthly however, not all of the boreholes have a record which spans the entire aforementioned time period.
- 11.6.47 Manual dip data from the 45 boreholes collected between December 2014 and October 2018 have groundwater levels ranging between 7 and 25 mAOD. The large variability in groundwater levels suggests that there are multiple groundwater bearing horizons within the vertical profile of the glacial till in the study area.

Summary of Groundwater Levels and Flows Across the Study Area

- 11.6.48 The dataset in the PWDS GI (IFA, 2015 and 2016) shows water levels within the regional boreholes remain relatively consistent over the course of the monitoring period. In the more regional data, short-lived seasonal fluctuations are observed within most boreholes with water levels rising and falling, likely in relation to wetter and drier climatic periods. The more regional GI accounts for seasonal variation with longer monitoring periods than what is available for the site-specific GI.
- 11.6.49 The consistency of water levels in the PWDS GI (IFA, 2015 and 2016) is an indication that groundwater is located within discreet discontinuous lenses of more permeable material, confined by more impermeable silt and clay layers associated with the deposit. This was confirmed during the site-specific GI where most strikes and seepages were encountered in more permeable horizons. The subsequent monitoring on site showed no correlation in groundwater levels across the site with groundwater levels recorded between 8.69mAOD in CP03 to 21.33mAOD in WS05. Where encountered, the majority of groundwater was seepages rather than strikes, indicating limited volumes of groundwater. This supports the idea of multiple isolated groundwater bearing horizons across the site that are unlikely to be hydraulically connected to one another.
- 11.6.50 Given the low permeability of both the granular and cohesive glacial till, groundwater flow through glacial till is unlikely to be high, and therefore significant hydraulic gradients are not anticipated to be present. Where the upper and lower glaciofluvial deposits are present there may be a wider hydraulic connectivity within these deposits, however this is not thought to be extensive as there is no evidence of correlation in the groundwater levels found in these layers.
- 11.6.51 Due to the discontinuous, anisotropic nature of the glacial till, the lateral extent of identified sand horizons is unknown and difficult to categorise with the limited GI. Granular Glacial till was identified within the cohesive glacial

till to the south of the site, however this again is discontinuous in nature and was not found in every GI location. The glaciofluvial deposits were only penetrated in the six cable percussion boreholes in the north, therefore they could be present in the south at depth but this is not proven. This makes it difficult to determine the lateral extent of these glaciofluvial deposits. However, no extensive hydraulic connectivity is predicted in any of the strata at the site given the anisotropic nature of them, apart from in the bedrock. There is the potential for interactions between the bedrock and the lower glaciofluvial deposits, where more permeable layers directly overlie the bedrock, however the extent of these granular/sandy layers is unknown.

- 11.6.52 Groundwater levels present within a permeable horizon at one location may not exist at adjacent locations. Consequently, groundwater bearing horizons identified in boreholes proximal to the proposed station area may not extend into the area of the proposed station itself. In contrast, where connected permeable pathways exist across the site, movement of potentially significant volumes of groundwater cannot be discounted.
- 11.6.53 Groundwater held in permeable horizons at depth may also be pressurised and result in artesian conditions at surface when intercepted. However, no artesian conditions were identified during the various GI, but this does not mean that they are not present.
- 11.6.54 More regionally within the study area groundwater within the alluvium (Secondary A Aquifer) are likely to be high and in hydraulic connection with the Savick Brook. As a result of this, the alluvium is likely to provide baseflow to the watercourse along its margins. During periods of heavy rainfall, groundwater is likely to build up in these deposits and, given it is unlikely to be able to flow downwards due to vertical impediments to flow with the glacial till, will have greater propensity to emerge at ground surface.
- 11.6.55 In terms of groundwater flooding, higher groundwater flood risk will only occur where permeable lenses of granular glacial till are connected to ground surface, which will be limited. Such lenses are discontinuous and will

be of finite storage with little ability to transmit groundwater anywhere other than upwards. For the majority of glacial till however, it is non-groundwater bearing and therefore low to no risk to groundwater flooding.

Groundwater-Surface Water Interactions

- 11.6.56 The local groundwater may be connected (either directly or indirectly) to watercourses and other hydrological features as baseflow, sinks, sources, spreads, collects, issues, and springs etc. Changes to groundwater quality and levels beneath the Scheme may therefore influence water quality and/or flows in these watercourses/hydrological features, where impacts to points of groundwater-surface water interaction occur. Points of potential groundwater-surface water interaction have been identified from OS maps/historical maps within the groundwater study area.
- 11.6.57 Based on the review of OS mapping data via MAGIC website (Defra, 2021) and historical maps (NLS, 2021) no natural springs have been identified within the study area.
- 11.6.58 Within the 1.0km study area, there are five watercourses identified, three of which flow through the Scheme boundary. The Lancaster Canal is likely to be lined due to the artificial nature of it, however groundwater ingress is a known issue and therefore groundwater-surface water interactions with the Canal cannot be fully discounted. The other two channels within the Scheme boundary (Central Watercourse and Lady Head Runnel) flow across glacial till, with most of the water within the channel likely related to surface runoff and drainage of the land. Given the largely impermeable nature of the till any contributions of groundwater to baseflow are likely to be limited and localised to areas where the watercourses flow through more permeable sandy horizons.
- 11.6.59 Issues and sinks typically relate to drainage infrastructure (such as culvert outfalls, soakaways etc.) rather than being indicative of shallow groundwater emergence. However, as the marked 'issues' or 'sinks' have not been

surveyed as part of the current assessment, it is not possible to validate their presence or type. As a result, they have been conservatively treated as 'high' value receptors (spring discharges in this instance) until proven otherwise.

- 11.6.60 Five 'issues' were identified within the 1.0km study area, with one located within the Scheme boundary itself (Issue at Lady Head Runnel). This issue lies within the southern extent of the site adjacent to the proposed new station location. The locations of the issues are presented in Figure 11.3, Figure 11.4, and Figure 11.5. It should be noted that one issue, located to the north/east of the Scheme boundary is associated with an overflow for the Lancaster Canal (LLC, 2021), which subsequently flows through the site.
- 11.6.61 Based on the review of OS mapping data, five 'sinks' have been identified within the study area, one of which lies within the Scheme boundary at the proposed station location. The locations of the sinks are also presented in Figure 11.3, Figure 11.4, Figure 11.5.
- 11.6.62 A summary of all potential groundwater-surface water interactions are presented in Table 11.21.

Receptor Name	Distance from Scheme	Location	Importance
Issue for unnamed	863m north	348825 432240	High
watercourse, eastern			
side of Sidgreaves Lane			
(Pine House)			
Issue east of Brylea	874m north-west	348438 431998	High
Caravan Park			

Table 11.21:	Location of	receptors and	their im	portance
--------------	-------------	---------------	----------	----------

Environmental Statement: Chapter 11 Water Environment

Receptor Name	Distance from	Location	Importance
	Scheme		
Issue for Central	271m east/north	349223 431641	High
Watercourse			
Issue for Lady Head	Within Scheme	349629 431253	High
Runnel	boundary		
	040	0.40000 404000	
Issue at Darkinson Lane	918m south-west	348629 431026	High
Sink on Darkinson Lane	455m west	348844 431238	High
Sink within Scheme	Within Scheme	349337 431356	High
boundary, north of	boundary		
railway line			
Sink north of Lancaster	283m east	349225 431675	High
Canal			
Sink at roundabout on	290m north-east	349269 431862	High
Lea Road			
Sink east of Brylea	923m north-west	348425 432015	High
Caravan Park			

Groundwater Abstractions

11.6.63 As shown in Figure 11.5, the entire study area is situated within an SPZ3. In this instance, the Zone 3 classification is associated with the Sherwood Sandstone Group Principal aquifer at depth, rather than the glacial till. Within 10km of the study area, there are 12 SPZ1 classifications, the closest of which is situated 2.9km to the northeast of the study area. All 12 of the SPZ1

classifications are situated within the same SPZ3 catchment that extends into the study area.

- 11.6.64 Groundwater abstractions fall under two categories private licensed abstractions and private unlicensed abstractions. Descriptions of both can be found below (Environment Agency, 2018).
- 11.6.65 Private unlicensed groundwater abstractions comprise those for quantities of less than 20m³ per day. There is no obligation to register private water supplies however, some records of these abstractions are kept by the Local Authority if these are known. Preston City Council has confirmed there are no private unlicensed groundwater abstractions within the study area, therefore private unlicensed abstractions have been scoped out of any further assessment.
- 11.6.66 All groundwater abstractions over 20m³ per day must have a valid licence authorised by the EA. Consequently, records of all private licenced groundwater abstractions are held by the EA. Five abstractions for dewatering purposes are present 1.05km south-west of the site. Another set of abstractions are located approximately 1.89km, at the closest point to the Scheme boundary, to the west of the study area at Salwick. Given the distance of these abstractions from the site, and the likelihood that they are abstracting from the Sherwood Sandstone Group Principal aquifer at depth, these abstractions have been scoped out of any further assessment.
- 11.6.67 This assessment has not identified the presence of any wells listed on the current OS mapping within the study area. Eleven wells have been identified on historical maps within 1.0km of the Scheme boundary, however none of these lies within the Scheme boundary itself with the closest lying 73m west. These historical wells could be indicative of either shallow groundwater abstraction associated with permeable lenses within the glacial till, or more likely groundwater abstraction from the underlying Sherwood Sandstone Group Principal aquifer. However, the status of these wells shown on the historical maps are currently unknown and aerial imagery was too poor

quality to identify any features. Therefore, for the purposes of the assessment, they have been conservatively treated as 'high' value receptors until proven otherwise.

11.6.68 A summary of all potential groundwater abstractions are presented in Table 11.22.

Receptor Name	Distance from	Location	Importance
	Scheme		
Historical Well north of	73m west	349058	431336
railway line where			
Sidgreaves Lane meets			
Darkinson Lane			
Historical Well south of	175m west	348999	431281
railway line on			
Darkinson Lane			
Historical Well at Bryars	981m west	348297	431777
Farm			
Historical Well at Danes	371m east	349325	431605
Pad			
Historical Well at	88m north	348998	431807
Quaker Lodge			
	050	0.40.400	404044
Historical Well east of	358m north-east	349490	431614
Lea Lane			
	F24m aget	240275	424720
HISTORICAL Well east of	534m east	349375	431720
Lea Road. North of			

 Table 11.22: Location of receptors and their importance

Canal			
Historical Well east of	422m east	349301	431850
cross and Lea Road			
Historical Well at Lea	39m north	348987	431997
House			
Historical Well at	666m north	348920	432142
Laburnum House			
Historical Well south of	702m north	349052	432181
Hoyles Lane			

<u>GWDTE</u>

- 11.6.69 An assessment of all statutory and non-statutory ecological designations has been undertaken within the study area using the Magic Maps (Defra, 2021 application). As a result of the assessment there were found to be no statutory or non-statutory ecological designations within the 1.0km study area. In addition to this, habitat surveys completed at the site (see Chapter 6 ' Ecology') indicate that there are no GWDTEs present within the study area.
- 11.6.70 There are two local nature reserves located to the east of the site, Fishwick Bottom LNR and Haslam Park Preston LNR. These LNRs are located 1.2km and 1.7km east, respectively. Descriptions of these areas describe wetland habitats suggesting that GWDTEs may be present within the Local Nature Reserves, however given these are outside the study area and located upstream of the Scheme, these have been scoped out of any further assessment.
- 11.6.71 Newton Marsh SSSI is situated approximately 4km to the south-west of the Scheme. Due to the large distance between the study area and the SSSI it is

considered unlikely that changes to the hydrogeological regime as a result of the Scheme would have an impact upon the SSSI. Therefore, this has also been scoped out of any further assessment.

Groundwater Vulnerability

- 11.6.72 The groundwater vulnerability of the study area is entirely categorised as medium low. This categorisation is based on the largely impermeable superficial glacial till deposits that underlie the study area. The glacial till is a lower priority groundwater resource that has some natural protection.
- 11.6.73 Given the glacial till is classified as a lower priority groundwater resource that has some natural protection; this results in a moderate to low overall groundwater pollution risk. Activities in these areas should follow good practice to ensure they do not cause groundwater pollution.

Preliminary Hydrogeological CSM

11.6.74 Based on an understanding of the underlying hydrogeological process and baseline receptor outlined above, the CSM for the site is presented in Figure 11.7.

Figure 11.7: CSM of Study Area

Water Environment Regulations (WER)

- 11.6.75 The Water Environment (WFD) Regulations (2017) require that all activities within, adjacent to or in the vicinity of a WER Regulations designated water body (surface water or groundwater) are assessed for compliance with WER Regulations legislative requirements. It must be demonstrated there is no deterioration or risk of deterioration to WER classification of surface or groundwater bodies.
- 11.6.76 The impact assessment considers potential impacts on the scoped-in WER Classification Elements for both surface and groundwater bodies arising from construction and operation. The WER Regulations compliance assessment is contained in Appendix 11.3in volume 3 of this ES.

Flood Risk – Future Baseline

- 11.6.77 The effects of climate change are predicted to increase the frequency and severity of flood events over the 100-year design life of the Scheme. This would increase the risk of flooding to receptors already at risk, and new receptors currently not at risk including the Preston to Blackpool railway and the local road network. Environment Agency Guidance, which details how this should be considered within FRAs, has been applied to the design and full details are in Section 4 of the FRA (Appendix 11.1). Briefly, guidance requires flood risk to be considered for all rainfall events at a level 50% greater than the predicted rainfall for a 1-100year event.
- 11.6.78 There is also the potential for new development to occur within the study area with potential planning applications yet to be submitted by Story Homes for the proposed Lee Road residential development north and south of the Scheme. However, assuming that management of flow conveyance and drainage (mainly comprising culverts and highways drainage) continues and that any new development follows current guidance and is designed to remain safe from future flood risk and result in no impact elsewhere then no increase in baseline sensitivity is predicted.

Groundwater – Future Baseline

- 11.6.79 In general, any new dewatering activities have the potential to reduce groundwater levels in the study area. Conversely, if existing dewatering regimes or abstractions cease, then groundwater levels may rise.
- 11.6.80 Over the medium-term and long-term, groundwater resources in the study area may be affected by climate change. However, any changes would be complex and may result in:
 - a long-term decline in groundwater storage due to higher soil moisture deficits due to warmer, drier summers.
 - increased frequency and severity of groundwater droughts leading to reduction in base flow to surface watercourses.
 - increased groundwater flooding from high intensity storms and rainfall periods.
- 11.6.81 Baseline conditions for water quality could change over the anticipated lifetime of the Scheme because of land-use changes and measures to improve water bodies in line with WER Regulations objectives. It is likely that groundwater quality would generally improve as historical pollution sources are removed, and better water quality management measures are put into place.
- 11.6.82 However, based on currently available information, there is unlikely to be the potential for a significant change to groundwater flow and/or quality in the future. This is due to the propensity for limited amounts of groundwater to be transmissible through the glacial till, which in turn also limits vertical migration of fluids into the underlying Sherwood Sandstone Group Principal aquifer.
- 11.6.83 Changes to the groundwater regime brought about by climate change are unlikely to affect groundwater quality and/or flow for similar reasons to above
unless groundwater is able to emerge at the surface through permeable pathways in the glacial till, thereby increasing groundwater flooding risk.

Summary of Baseline Importance

11.6.84 Following the assessment of the baseline conditions for each aspect of the water environment, an importance level has been assigned based on the methodology outlined in Section 11.4. Table 11.23 provides a summary of the importance of each receptor that has been identified to interact with the Scheme.

Table 11.23: Summary of baseline importance

Receptor Name	Surface	Hydromor	Flood
	Water	phology	Risk
	Quality		
Central Watercourse	Medium	Low	High
Lady Head Runnel	Medium	Low	High
Western Watercourse	Medium	Low	High
Lancaster Canal	Very High	Scoped out	High
Surface water runoff and ponding	n/a	Scoped out	Low
Savick Brook	High	High	Very High
Receptor Name	Groundwater		
Issue for unnamed watercourse, eastern	High		
side of Sidgreaves Lane (Pine House)			

Issue east of Brylea Caravan Park	High
Issue for Central Watercourse	High
Issue for Lady Head Runnel	High
Issue at Darkinson Lane	High
Sink on Darkinson Lane	High
Sink within Scheme boundary, north of	High
railway line	
Sink north of Lancaster Canal	High
Sink at roundabout on Lea Road	High
Sink east of Brylea Caravan Park	High
Historical Well north of railway line where	High
Sidgreaves Lane meets Darkinson Lane	
Historical Well south of railway line on	High
Darkinson Lane	
Historical Well at Bryars Farm	High
Historical Well at Danes Pad	High
Historical Well at Quaker Lodge	High
Historical Well east of Lea Lane	High
Historical Well east of Lea Road. North of	High

Canal	
Historical Well east of cross and Lea	High
Road	
Historical Well at Lea House	High
Historical Well at Laburnum House	High
Historical Well south of Hoyles Lane	High

11.7 Impacts – Construction (With Mitigation)

Introduction

- 11.7.1 This section describes the assessment of potential impacts on the surface water environment of the Scheme during construction.
- 11.7.2 Potential impacts on the surface water environment arising from the construction phases of the Scheme are assessed. This considers and includes embedded mitigation measures for each of the surface water quality/supply, hydromorphology, flood risk and groundwater attributes. All potential impacts reported are adverse, unless otherwise stated.

Embedded and Good Practice Mitigation

- 11.7.3 Embedded mitigation relevant to this chapter is summarised in Table 11.24 below.
- 11.7.4 In line with DMRB LA 104 (Highways England *et al.*, 2020b), the significance of any potential impact is reported with embedded mitigation measures already considered.

Table 11.24: Summary of Embedded Mitigation relevant to the WaterEnvironment during construction

Торіс	Description		
Construction	Good practice design and construction measures are assumed to		
Code of	be adequate to ensure that the magnitude of effects would be		
Practice	negligible. These measures would include, but are not limited to:		
(CCoP)			
	 Avoidance of areas of flood risk. 		
	 Good materials management such as adding breaks 		
	into stockpiles to minimise disruption of flow.		
	Appropriate sizing of watercourse crossings in		
	- Appropriate sizing of watercourse crossings in		
	accordance with CIRIA C766 (CIRIA, 2019).		
	 Attenuation of surface water runoff prior to discharge 		
	to the ground or to a watercourse at a rate agreed		
	with the relevant Risk Management Authority (RMA).		
	 The design of access tracks and associated 		
	drainage to maintain natural catchments and		
	overland flow paths and minimise the impact on		
	floodplains.		
	Lining of soil storage areas, ensuring that run-off is		
	cantured and there will be no infiltration to the		
	around		
	ground.		
	 Guidance for Pollution Prevention to be followed. 		
	 Development of a Construction Environmental 		
	Management Plan (CEMP) as part of Environmental		
	Management System requirements.		
	indiagonon oyotom roquiononto.		
	 Limit the removal of riparian vegetation. Where 		
	removed reinstate to baseline conditions or to		

	provide betterment thereof.
	 Limit in/near channel working and the tracking of plant and machinery within the vicinity of the channel.
	 Any work in or near channel such as culvert replacements/extensions should be undertaken during periods of low flow.
	 Follow relevant good practice guidance on the construction of culvert replacements and extensions (CIRIA, 2010).
	 Follow relevant good practice guidance on the construction of the operational outfalls (CIRIA, 2019).
	 Consider green bank protection/matting during the construction of outfalls.
Pre-	Pre-earthworks drainage is likely to take the form of ditches and
earthworks	will be constructed at the top of cuttings and the base of
drainage	embankments where surface water and sub-surface pathways
	from adjoining land will flow towards the Scheme or other
	receptors, thus intercepting the flow. The purpose of the pre-
	earthworks drainage is to collect runoff from the natural
	catchments surrounding the Scheme and convey overland flow to
	the nearest watercourse, maintaining the existing hydrological
	regime of the natural catchment, where possible.

Surface Water Quality

11.7.5 Potential construction works/activities that may impact surface water features in the study area include in-channel working, and (earth) works

adjacent to the channel or within the catchment of the water features. Specific impacts may include/result in a measurable, temporary shift from baseline water quality, a decline in pollutant removal capacity and river ecosystem health, and a loss of aquatic species. These impacts, and potential causes of them, are explained in greater detail in Table 11.25. The list of potential impacts documented is not exhaustive but are examples of the most likely. The assessment of these impacts on the individual surface water features are reported in Table 11.26.

Type of Impact	Description
Decline in	 An increase in suspended sediment concentrations
surface water	in downstream water features from construction of
quality	crossing structures in-channel or on watercourse
	banks, soil stripping and vegetation removal, soil
	storage, erosion of drainage ditches and all other
	earthworks which could result in the mobilisation of
	sediment.
	 Accidental release of oils, fuels and chemicals to
	the water environment from mobile or stationary
	plant in or near to water features, and from
	inappropriate refuelling and fuel storage practices.
	Increases in alkalinity from poor management and
	spillages of concrete or cement.
	 Inputs of contaminants to the water environment
	could occur from disturbance of potentially
	contaminated land with potential drainage pathways
	to surface water features. Contaminated particles
	within suspended sediment may increase the bio-
	toxicity of in-channel sediment deposits.
	 Sewage inputs to the water environment from

Table 11.25: Potential general impacts during construction

		accidental/uncontrolled release from sewers
		through damage to pipelines during service
		diversion or unsatisfactory disposal of sewage from
		site staff facilities.
Reduction in	•	A reduction in the dilution capacity of a watercourse
dilution capacity		due to the decline in water quality (as described
		above) or diversion of sub-catchment flows.
Adverse		A decline in river ecosystem health and loss of
impacts on		protected aquatic species due to the decline in
biodiversity		water quality (as described above).
	•	Excess sediment affecting the health of aquatic
		fauna by interfering with respiration and increasing stress levels.
	•	Releases of chemicals and concrete which can
		have severe or fatal consequences on freshwater
		ecology.

- 11.7.6 The Central Watercourse may be impacted by works within the catchment to the west associated with the construction of the roundabout, access road and canal crossing. In-channel works required for the proposed culvert replacement and extension associated with the new railway station, platforms, secondary means of escape (SME) and car park may also cause surface water quality impacts on the Central Watercourse, as might construction from four new outfalls.
- 11.7.7 The Western Watercourse runs adjacent to the Scheme and may be impacted by the construction of the roundabout, accessroad and canal crossing, which are within 250m of the watercourse, and near to in-channel works associated with four new outfalls.

- 11.7.8 Lady Head Runnel may be impacted by in-channel works required for the proposed culvert replacement and extension associated with the new access road may also cause surface water quality impacts on Lady Head Runnel, as might construction of a new outfall and from works within the catchment associated the SME muster area.
- 11.7.9 Lancaster Canal may be impacted by works in the water body associated with the new crossing and from construction works adjacent to the canal.
- 11.7.10 Savick Brook is located downstream of the Scheme and Western, Central and Lady Head Runnel watercourses are all tributaries of it. Therefore, the Savick Brook may be potentially impacted by all forms of construction works associated with the Scheme.

Water Feature	Type of Impact	Importance	Magnitude	Significance
Central	Decline in	Medium	Minor	Slight
Watercourse	surface			
	water			
Western	quality.	Medium	Minor	Slight
Watercourse				
	Reduction			
Lady Head	in dilution	Medium	Minor	Slight
Runnel	capacity.			
Lancaster	Adverse	Very High	Minor	Moderate/Large
Canal	impacts on			
	biodiversity.			
Savick Brook		High	Negligible	Slight

Table 11.26: Potential impacts on specific water features – Construction

Hydromorphology

- 11.7.11 During the construction phase, the following activities have been identified as having the potential to impact on the hydromorphology of watercourses identified in the baseline:
 - construction of three temporary site compounds (including topsoil stripping, earthworks, provision for compound drainage, and creating areas of hardstanding);
 - removal and replacement of the existing field culvert on the Central Watercourse upstream of the Preston Fylde Junction to Blackpool North line;
 - construction of the culvert extension downstream of the railway station building on the Central Watercourse to accommodate the SME;
 - construction of the culvert extension under the emergency muster area associated turning head south of the Preston Fylde Junction to Blackpool North line;
 - construction of the railway station building, footbridge over the railway line, railway station platforms and associated car park facilities;
 - construction of the access road and surface water drainage systems; and
 - discharge of construction drainage to watercourses.
- 11.7.12 Without any specific mitigation (i.e. non-embedded mitigation), these activities would have the potential to cause the following effects which are described in more detail below:
 - increased fine sediment input which could enter surface water features from runoff generated during construction. This can lead to the potential smothering of morphological features and alteration of hydromorphological processes within the receiving channel;

- changes to flow regime due to the discharge of external flows such as construction drainage into surface water features and over-pumping during culvert construction/extension. This could cause alterations to flow regime with subsequent changes to morphological features and processes;
- loss of riparian vegetation to facilitate construction of the design.
 Removal of riparian vegetation can lead to decreases in channel bank stability and increases in runoff entering surface water features; and
- disturbance of channel bed and banks through construction in or near channel. In-channel and near-channel construction (including culverts and outfalls) could lead to the removal of natural bed substrate and natural hydromorphological features, disruption and removal of lengths of natural bank and bed.
- 11.7.13 The potential impacts relating to the construction activities outlined above are described for each watercourse in Table 11.27 and summarised in Table 11.28.

Type of Impact	Description
Increased	 Given the limited range of hydromorphological
sediment input	features and processes within the Central and
	Western Watercourses and Lady Head Runnel, and
	the overall distance from construction areas to the
	Western Watercourse, it is unlikely these
	watercourses would be sensitive to changes in fine
	sediment input. Therefore, the impact of increased
	sediment input would be Negligible with a Neutral
	significance of effect.
	Due to the distance from working areas, it is unlikely
	increases in sediment laden runoff would be realised

Table 11.27:	Hydromorp	hological	impacts	during	construction
	· · · · · ·			J	

	on Savick Brook. Therefore, the impact of increased
	sediment input would be Negligible with a Neutral
	significance of effect.
Changes to flow	 Construction drainage discharges would likely be
regime	attenuated to green field runoff rates.
	 Over-pumping would likely be required to facilitate
	culvert replacements/extensions on the Central
	Watercourse and Lady Head Runnel.
	 Given that construction drainage discharges would
	be attenuated to greenfield runoff rates and over
	pumping would take place during periods of low flow
	the impact of changes to flow regime is reported as
	Minor with a Slight significance of effect.
	It is not opticipated construction drainage would be
	- It is not anticipated construction drainage would be
	discharged to the Savick Brook, and no over
	pumping would be required therefore no impacts are
	anticipateo.
Loss of riparian	 The replacement of the field culvert on the Central
vegetation	Watercourse will extend approx. 10m longer than the
	existing culvert. Current design proposals indicate
	that the existing culvert below the railway will be
	extended downstream. Lea Road culvert on Lady
	Head Runnel will also be extended downstream. All
	culvert extensions would require the removal of
	mature riparian vegetation
	 Construction of operational outfalls (OF2, OF3a and
	OF3b) on the Western Watercourse would require
	riparian vegetation removal.
	 It is likely riparian vegetation is contributing to bank

	 stability on the Central Watercourse downstream of the railway, on Lady Head Runnel downstream of the Lea Road culvert and on the Western Watercourse around the proposed outfall locations. Therefore, the impact of loss of riparian vegetation related to culvert extensions and outfall construction would be Minor with a Slight significance of effect on these watercourses. No works will take place within the vicinity of Savick Brook and therefore no impacts are anticipated.
Disturbance and loss of natural bed and banks	 Culvert replacements/extensions and the construction of operational outfalls would involve the over-pumping of the watercourses to provide a dry working area, tracking of plant and machinery along the watercourse banks and the removal of natural channel bed and bank to facilitate the new/extended culverts.
	 On the Western Watercourse operational drainage outfalls (OF2, OF3a and OF3b) would be constructed. OF6 would be constructed within the extended culvert Lead Road culvert on Lady Head Runnel – therefore no impacts are anticipated from the construction of this outfall however impacts from the culvert extensions still remain. Given that the channel bed and banks are easily
	erodible in locations where outfalls and culvert extension/replacements are required the impacts would be Minor, with a Slight significance of effect on the Central and Western Watercourses and Lady Head Runnel.

•	No works will take place within the vicinity of Savick
	Brook and therefore no impacts are anticipated.

Table 11.28: Summary of hydromorphological construction impacts

Water Feature	Type of Impact	Importance	Magnitude	Significance
Central Watercourse	Increased sediment input	Low	Negligible	Neutral – not significant
	Changes to flow regime		Negligible	Neutral – not significant
	Loss of riparian vegetation		Minor	Slight – not significant
	Disturbance and loss of natural bed and banks		Minor	Slight – not significant
Western Watercourse	Increased sediment input	Low	Negligible	Neutral – not significant
	Changes to flow regime		Negligible	Neutral – not significant
	Loss of riparian vegetation		Minor	Slight – not significant
	Disturbance and loss of natural bed and banks		Minor	Slight – not significant
Lady Head	Increased sediment	Low	Neutral – not	Neutral – not

Runnel	input		significant	significant
	Changes to flow		Slight – not	Slight – not
	regime		significant	significant
	Loss of riparian		Slight – not	Slight – not
	vegetation		significant	significant
	Disturbance and loss		Slight – not	Slight – not
	of natural bed and		significant	significant
	banks			
Savick Brook	Increased sediment	High	Negligible	Neutral- not
	input			significant
	Changes to flow		No impacts	n/a
	regime		anticipated	
	Loss of riparian		No impacts	n/a
	vegetation		anticipated	
	Disturbance and loss		No impacts	n/a
	of natural bed and		anticipated	
	Danks			

Flood Risk

- 11.7.14 The FRA (Appendix 11.1) includes a full assessment of the potential impacts of the Scheme on flood risk as shown in Table 11.29. A summary of construction works impacts are shown in Table 11.30.
- 11.7.15 It is anticipated that the overall magnitude of impact on Flood Risk from the effects associated with the construction phase works would be negligible

resulting in a significance of neutral. No additional essential mitigation is therefore required.

Type of Impact	Description
Loss of floodplain	 The location of site compounds and the storage of
Storage	potentially reduce fleedaleia storage and divert
	flood flow routes
	 The location of construction compounds within
	Flood Zone 1 and in areas remote from flooding
	associated with Ordinary Watercourses would
	ensure that the impact of this potential effect would
	be negligible.
Temporary flow	 The construction of the new culvert is likely to
constrictions	require the installation of a cofferdam or similar
during culvert	structure along with over-pumping to create a dry
construction	working area. Temporary work located within or
	adjacent to watercourses could affect the
	frequency, depth, extent, and duration of fluvial
	flooding. However, the timing of these works to
	avoid periods of wet weather together with the
	design of the works that would be approved by the
	Local Lead Flood Authority through the
	environmental permitting process would ensure that
	the impact on flood risk is negligible.
Increase in	 The majority of proposed features would be located
surface water	on open areas that have permeable surfaces. The
runoff rate	compaction of soil and the creation of impermeable
	surfaces associated with the proposed compounds
	and construction access tracks, have the potential

	•	to increase the rate of surface water runoff. This has the potential to result in impacts on local surface water flood risk and/or fluvial flood risk within the receiving watercourse. Embedded mitigation in the form of site drainage would ensure that the magnitude of this impact is negligible at the compound locations and in receiving waterbodies.
Changes in groundwater levels	•	The groundwater assessment has concluded there is possibility that ground works may create barriers perpendicular to localised groundwater flow pathways leading to mounding of groundwater and possible emergence on up-gradient side and reduction in baseflow on down-gradient side. This would need to be confirmed at detailed design stage based on further GI and confirmation of finalised piling depths; in the meantime moderate magnitude impacts cannot be discounted.
Potential damage to canal structures	•	The Scheme includes a new three-span design access road bridge (see Section 3.1.3) west to the existing Quaker's Bridge. Construction works could damage the canal structure itself, which could impact potential canal flood mechanism. Good practice mitigation including the design and construction of the bridge following detailed ground investigation and consultation with the Canal and River Trust would ensure that there is a very low likelihood of adverse impacts to the canal and the magnitude of impacts has been assessed to be negligible.

Water Feature	Type of Impact	Importance	Magnitude	Significance
Central	Loss of	High	Negligible	Slight – not
Watercourse	floodplain			significant
	storage			
Western		High	Negligible	Slight – not
Watercourse	Temporary Flow			significant
	constrictions			
Lady Head	during culvert	Very High	Negligible	Slight – not
Runnel	construction			significant
Surface water	Increase in	High	Negligible	Slight – not
runoff	surface water			significant
	runoff rate			
Savick Brook		Low	Negligible	Slight – not
				significant
Lancaster Canal	Potential	High	Negligible	Slight – not
	damage to canal			significant
	structures			
Groundwater	Changes in	Low	Moderate	Moderate -
flooding	groundwater		adverse	significant
	levels			

Table 11.30: Summai	y of flood risk o	construction impacts
---------------------	-------------------	----------------------

Groundwater

11.7.16 During construction it is considered likely that potential impacts to groundwater features (including superficial and bedrock aquifers, and associated groundwater receptors, such as points of groundwater-surface water interaction, private licensed and unlicensed abstractions, SPZs, etc.) could arise from the following:

- during construction, there is a risk of groundwater contamination from the accidental spillage of fuels, lubricants, cementitious materials, hydraulic fluids, or other harmful substances. These could be stored and used throughout the Scheme, although the main storage areas would be in the construction compounds. Leaks and spills of these materials could migrate from the surface into aquifers and subsequently to secondary receptors such as groundwater abstractions and points of groundwater-surface water interactions;
- physical contamination of groundwater from ground disturbance such as soil stripping, construction of cuttings, and foundations for embankments), bridge abutments/gantries, other excavations required (for attenuation ponds for example), and piling, leading to the potential for increased sediment in groundwater reaching key receptors. The pollution risk to groundwater bodies, from the disturbance of contaminated ground specifically, is covered in Chapter 10: 'Soils, Geology and Hydrogeology' of this ES;
- the construction of cuttings, foundations, excavations for attenuation ponds, and piling activities could create vertical pathways for contaminated groundwater to migrate between aquifers. Even if groundwater is not contaminated, there is potential for mixing of different groundwater chemistries, which could be significant for WER Regulations groundwater body status, as well as for sensitive groundwater receptors, including groundwater abstractions and points of groundwater-surface water interaction;
- impedance of groundwater flow from temporary below ground structures, and the potential corresponding impact on groundwater levels and/or quality;
- local groundwater drawdown as a result of temporary dewatering. This may be required to construct any sub-surface structures, such as cuttings, foundations, and other excavations required (such as attenuation ponds) that intercept the groundwater table. Drawdown

impacts on groundwater levels, flows, and quality may be experienced in areas outside of the works area. Discharges from dewatering may also impact on receiving surface water or groundwater bodies; and

- interception of overland flows through the introduction of impervious structures or compaction of soils, and the movement and storage of earth materials within the study area, potentially disrupting local groundwater recharge. The working area for construction is likely to be relatively small in comparison to the scale of the majority of aquifer(s) being crossed.
- 11.7.17 Based on the receptors outlined in the baseline section, a summary of the significance of impacts relating to construction activities associated with the Scheme are summarised in Table 11.31. A full description of the temporary construction impacts of each activity to support the magnitude of impact and significant effects assessment scoring is presented in Appendix of this chapter.

Receptor	Activity	Importance	Magnitude	Significance
Glacial till Secondary (undifferentiated) aquifer	Piling/ foundations of canal	Medium	Moderate	Moderate
	bridge, footbridge and staircase		Adverse	
	and station platform.			
Sherwood Sandstone Group Principal aquifer		Very High	Negligible	Slight
SPZ 3		Medium	Negligible	Neutral
	Sheet pile wall extending along			
Issue for Lady Head Runnel	the canal for full length of the	High	Negligible	Slight
	proposed bridge.			
Issue for Central Watercourse		High	No Impact	n/a
Three issues (outside study area)		High	No Impact	n/a
Sink north of railway line		High	No Impact	n/a
Four sinks (outside study area)		High	No Impact	n/a
Historical wells (outside study area)		High	Negligible	Slight

Table 11.31: Summary of potential impacts to groundwater receptors

Receptor	Activity	Importance	Magnitude	Significance
Lancaster Canal, Lady Head Runnel and		High	Negligible	Slight
central watercourse				
Western Watercourse and Savick Brook		High	No Impact	Slight
Glacial till Secondary (undifferentiated) aquifer	Excavation of attenuation pond	Medium	Moderate	Moderate
	for the new road and		Adverse	
	roundabout, and underground			
Sherwood Sandstone Group Principal aquifer	attenuation pond.	Very High	No Impact	n/a
SPZ 3		Medium	No impact	n/a
Issue for Lady Head Runnel	Excavation of cutting for road at	High	Minor	Moderate
	bridge.		Adverse	
Issue for Central Watercourse		High	Negligible	Slight
I hree issues (outside study area)		High	No Impact	n/a

Receptor	Activity	Importance	Magnitude	Significance
Sink north of railway line	Culvert extension.	High	Minor	Moderate
			Adverse	
Four sinks (outside study area)		High	No Impact	n/a
Historical wells (outside study area)		High	Negligible	Slight
Lancaster Canal, Lady Head Runnel and		High	Moderate	Moderate
Western Watercourse and Savick Brook		High	No Impact	n/a
Glacial till Secondary (undifferentiated) aquifer	Embankments.	Medium	Minor	Slight
			Adverse	
Issue for Lady Head Runnel	-	High	Minor	Slight
			Adverse	
Issue for Central Watercourse		High	Negligible	Slight

Receptor	Activity	Importance	Magnitude	Significance
Three issues (outside study area)		High	No Impact	n/a
	_			
Sink north of railway line		High	Minor	Slight
			Adverse	
	_			
Four sinks (outside study area)		High	No Impact	n/a
	-			
Historical wells (outside study area)		High	Negligible	Slight
	-			
Lancaster Canal, Lady Head Runnel and		High	Minor	Slight
central watercourse			Adverse	
	-			
Western Watercourse and Savick Brook		High	Minor	Slight
			Adverse	
Glacial till Secondary (undifferentiated) aquifer	Compound area and access	Medium	Minor	Slight
	routes construction and material		adverse	
	storage areas- including			
Issue for Lady Head Runnel	vegetation clearance, topsoil	High	Major	Very Large

Receptor	Activity	Importance	Magnitude	Significance
Issue for Central Watercourse	stripping and compaction.	High	Minor	Slight
			Adverse	
Three issues (outside study area)	-	High	No Impact	n/a
		i ligit		1,74
Sink north of railway line	-	High	Moderate	Moderate
			Adverse	
	-	Lliah	No Impost	2/2
Four sinks (outside study area)		пıgn	No impaci	n/a
Historical wells (outside study area)	-	High	Negligible	Slight
Lancaster Canal, Lady Head Runnel and	-	High	Minor	Slight
central watercourse			Adverse	
	_			
Western Watercourse and Savick Brook		High	Negligible	Slight

11.8 Impacts – Operation (With Mitigation)

Introduction

- 11.8.1 This section describes the assessment of potential impacts, on the surface water environment, of the Scheme during operation.
- 11.8.2 Potential impacts on the surface water environment arising from the operational phases of the Scheme are assessed, considering and inclusive of embedded mitigation measures, separately for each of the surface water quality/supply, hydromorphology, flood risk and groundwater attributes. All potential impacts reported are adverse, unless otherwise stated.

Embedded and good practice mitigation

11.8.3 In line with DMRB LA 104, the significance of any potential impact is reported with embedded mitigation measures already considered. Embedded mitigation relevant to this assessment are summarised in Table 11.32.

Table	11.32:	Summary	of	Embedded	Mitigation	relevant	to	the	Water
Enviro	nment (Operation)							

Торіс	Description
Drainage design	The Scheme drainage includes six drainage outfalls
including SuDS	discharging to three water features. Where SuDS are
	included, they are designed to treat pollutants and attenuate
	runoff to acceptable levels before discharging to the water
	environment. Engineering and environmental factors were
	considered to confirm the drainage design and the types and
	locations of SuDS features. Specific SuDS and attenuation
	features for individual catchments are as follows:

	_	October and A. Overfance weeten musicaff, all added
	-	Catchment 1: Surface water runoff, piped to
		attenuation pond through existing Cottam Link
		drainage system.
	•	Catchment 2: Surface water runoff piped to
		attenuation pond and discharged to watercourse;
		Catchment 3: Filter catch pits to Western
		Watercourse;
	•	Catchment 4: Stored in attenuation tank and
		oversized pipes to manhole on culvert extension;
	•	Catchment 5: Stored in oversized pipes to manhole
		on culvert extension;
	•	Catchment 6: Stored in oversized pipes to Lady
		Head Runnel;
	•	Catchment 7: Piped and discharged into headwall;
		and
	•	Catchment 8: piped to and stored in an attenuation
		tank to manhole on culvert extension.
	Further	detail is also provided Appendix 11.2 'HEWRAT
	Assessr	nent'.
Douting	Doutino	maintanance of drainage systems that include but
Routine	Routine	
Maintenance	are not	limited to:
	•	inspect inlets, outlets, banksides, structures and
		pipework for any blockage and/or structural damage
		and remediate where appropriate;
	•	regular inspection and removal of accumulated
		sediment, litter and debris from inlets, outlets,

		drains and ponds to avoid sub-optimal operation of
		SuDS; and,
	•	adherence to the maintenance plans specific to
		each SuDS component type as detailed within The
		SuDS Manual (CIRIA, 2015b).
Outfall structures	In relatio	on to outfall structures efforts should be made to:
	-	provide sufficient energy gradient differential for
		maintenance of flow and hydraulics from outfall
		locations:
	-	outfalls should be positioned so that discharges are
		directed towards the centre of the channel to follow
		the natural flow of water in the channel and not
		towards the opposite banks; and
	•	provision of scour protection where required i.e., at
		outlet headwall. Green protection should be used in
		preference to grey protection where appropriate.
Riparian	•	ensure re-planting of vegetation around outfall
Vegetation		structures, tying in with natural vegetation. The
		planting of trees, if removed, is of particular
		importance for bank stability;
	•	banks should be re-graded to replicate existing
		bank conditions, where practicable. Bank slopes of
		at least 1 in 2 are typically considered to be stable.
		Reinstated banks should be further stabilised with
		biodegradable geotextile and re-planted with
		suitable riparian vegetation where applicable; and,
	-	incorporate fence-lines to protect banks and
		establish planting where required.

Culvert	In relation to culvert extension/replacements efforts would be
replacement /	made to:
extensions	
	 maintain natural channel width and bed gradient
	through the culvert where possible. Avoid sharp
	changes in culvert gradients;
	 culverts should be designed using appropriate
	CIRIA guidance. Preliminary designs should be
	completed through detailed design which should
	undergo consultations with the required statutory
	consultees.
Monitoring and	In relation to new and extended culverts post project
Maintenance	appraisal, including an operational management and
	maintenance plan would be developed. The plan should
	include monitoring of culvert replacements/extensions for
	sediment and debris clearance, riparian vegetation
	management, and structure repair or maintenance.

Surface Water Quality

11.8.4 Potential impacts that may affect surface water features in the study area during operation include road runoff discharges associated with operation, changes in channel morphology and impacts of new culverts. These impacts may lead to a measurable, temporary or prolonged shift from baseline water quality, a decline in pollutant removal capacity and river ecosystem health and a loss of aquatic species. These impacts, and potential causes of them, are explained in greater detail in Table 11.33 (Potential general impacts during operation). The list of potential impacts documented is not exhaustive but are examples of the most likely. The assessment of these impacts on the individual surface water features are reported in Table 11.33 and Table 11.34.

Type of Impact	Description
Decline in surface	 Increased pollutant loading from the operation of
water quality	the Scheme, comparative to the pollutant loading
	from the existing road network, could reach surface
	water features from accidental spillages via outfalls
	or other surface water pathways. This could
	include suspended solids and contaminants bound
	to them (such as metals and phosphorus);
	biodegradable organic materials (such as debris
	and grass cuttings); diffuse sources with high
	levels of nutrients (nitrogen and phosphorus); de-
	icing salt (chloride); and oil and related
	compounds.
	 Changes to channel morphology (refer to
	Hydromorphology operational impacts) could have
	an associated effect on water quality by mobilising
	suspended solids and releasing previously 'locked'
	contaminants into the water column.
	 New or extended culverts could cause oxygen
	sags due to the lack of light, restricting aquatic
	plant photosynthesis and rapid microbiological
	degradation of biodegradable matter. Typically,
	longer structures would have greater impacts on
	water quality. Any reduction in surface area
	through culverts would also likely reduce
	atmospheric oxygenation of the water.
	Changes in turbulence could also affect
	atmospheric oxygenation of the water.
Reduction in	 A reduction in dilution capacity due to the decline

Table 11.33: Potential general impacts during operation

dilution capacity	in water quality.
Adverse impacts on biodiversity	A decline in ecosystem health due to the decline in water quality.

- 11.8.5 Western Watercourse and Central Watercourse will receive operational discharges from mainline drainage as well as from traffic free or low traffic catchments. These two watercourses have been subject to two assessments, routine runoff and accidental spillage risk, using HEWRAT (National Highways, 2019). Full details of these assessments and results are reported in Appendix 11.2 'HEWRAT Assessment' Lady Head Runnel will receive operation discharges from the from the SME and SME access road (traffic free).
- 11.8.6 Lancaster Canal and Savick Brook will not receive any operation drainage directly from outfalls associated with the Scheme.
- 11.8.7 The HEWRAT routine runoff assessments for proposed drainage were undertaken in accordance with LA 113 (Highways England *et al.*, 2019a). All input data and results are fully detailed along with the assessment method in Section 25 Appendix 11.2: 'HEWRAT Assessment'.
- 11.8.8 All single and cumulative assessments undertaken pass all aspects of the HEWRAT routine runoff assessment at the Step 2, prior to mitigation, including EQS compliance for Copper and Zinc. An 'Alert' warning is associated with the Pass results for the sediment-bound pollutant aspect of the assessment for single outfalls 2 and 4 on the Western and Central Watercourses, and cumulative outfalls 1 and 2 on the Western watercourse. This is due to the presence of a culvert within 100m downstream of the respective proposed outfall locations that may reduce velocity and result in accumulation of sediments.

- 11.8.9 At Step 3 after mitigation all assessments passed for all HEWRAT aspects, this equates to a Negligible impact of operational drainage for the Western and Central Watercourses. This demonstrates the betterment of water quality delivered within the receiving watercourses from the proposed outfalls from the Scheme.
- 11.8.10 For all applicable drainage catchments, associated outfalls and receiving watercourses throughout the Scheme, spillage risk assessment results are deemed to be within acceptable limits in accordance with DMRB LA 113, even when compared to the most sensitive annual probability threshold (0.5% or return period >200 years). All spillage risk results represent a negligible environmental impact (see Appendix 11.2 for detailed results).
- 11.8.11 As Lady Head Runnel only receives discharges from a traffic free catchment, and Savick Brook and Lancaster Canal do not receive and direct discharges, the impact of operational drainage on these watercourses is considered to be Negligible.

Water Feature	Type of	Importance	Magnitude	Significance
	Impact			
Central	Decline in	Medium	Negligible	Neutral
Watercourse	surface			
	water			
Western	quality	Medium	Negligible	Neutral
Watercourse				
	Reduction			
Lady Head	in dilution	Medium	Negligible	Neutral
Runnel	capacity			
Lancaster	Adverse	Very High	Negligible	Neutral
Canal	impacts on			

Table 11.34: Summary of potential operation impacts on surface water quality.

Environmental Statement: Chapter 11 Water Environment

Savick Brook	biodiversity	High	Negligible	Neutral

Hydromorphology

- 11.8.12 During the operation phase, the following activities have been identified as having the potential to impact on the hydromorphology of watercourses identified in the baseline:
 - operation of replacement and extended culverts;
 - operation of outfalls structures and associated discharges; and
 - changes to flow paths and catchment areas relating to the operation of the design.
- 11.8.13 Without any specific mitigation (i.e. non-embedded mitigation) these activities would have the potential to cause the following effects which are described in more detail below:
 - loss of hydromorphological features including natural bed and banks, changes in channel gradient and potential channel adjustment related to culvert extensions/replacements. This could impact flows, sediment regime and the lateral and longitudinal connectivity of the watercourse and alter fluvial process;
 - changes in flow regime due to alteration of overland flow paths related to new infrastructure. This could potentially lead to the interruption of natural fluvial processes (although these are limited), including sediment transport, which has an overall effect on the watercourse's equilibrium and natural diversity; and
 - operational discharges to watercourses have the potential to cause changes in flow regime within the vicinity of the outfall, erosion of the channel bed and banks due to increased discharge velocities. Changes in flow regime may lead to changes in existing fluvial process.

11.8.14 The assessment of these impacts on the individual surface water features are reported in Table 11.35 and Table 11.36.

Type of Impact	Description
Operation of new	 Potential for alteration of existing fluvial processes
and extended	and loss of existing channel bed and banks
culverts	upstream by increasing culverted length by
	approximately 10m. No morphological features
	currently exist upstream.
	 The new culvert on the Central Watercourse would
	be larger in diameter and could also alter channel
	gradient leading to potential channel adjustment
	downstream as the watercourse establishes a new
	equilibrium. Adjustment could include increases in
	erosion due to increased flow volumes from the
	larger culvert during high flow events.
	 The culvert extensions/replacements downstream of
	the station building on the Central Watercourse and
	downstream of Lea Road on Lady Head Runnel
	may also lead to deposition within the culverts
	during low flows due to possible reductions in the
	channel gradients. Increased flow velocities and
	decreased roughness from the culvert could further
	alter sediment entrainment and morphologic
	behaviour within these channels, though this may
	not be significant.
	 No discernible hydromorphological features or
	processes are observed on the Central
	Watercourse. Desk-based analysis would suggest
	this is also the case for Lady Head Runnel. The

Table 11.35: Summary of hydromorphological impacts during operation

		banks surrounding the culvert outlet downstream of
		the railway line on both watercourses are currently
		vegetated with a mature continuous riparian strip.
		Should this be retained, it would aid in reducing
		bank erosion through increased flows through the
		culvert during high flow events. Therefore, the
		impact is reported as Minor, with a Slight
		significance of effect for the Central Watercourse
		and Lady Head Runnel.
	•	No culverts will be required on the Western
		Watercourse or Savick Brook therefore no impacts
		related to culvert extensions/replacement are
		anticipated.
Changes to flow	•	Operational outfalls OF4 and OF8 would discharge
regimes and		directly into the replaced field culvert before entering
disturbance to		the Central Watercourse. Operational outfalls OF5
channel bed and		and OF7 would discharge into the extended railway
banks from		culvert on the Central watercourse downstream of
operational		the station building. Therefore, the discharge of
drainage		flows in these locations would not directly impact on
discharges		natural bed and banks but could increase flows
		within the culverts.
	•	Given that operational discharges would likely be
		discharged at greenfield runoff rates, the impact is
		reported as Negligible with a Neutral significance of
		effect.
	•	Operational outfalls OF2, OF3a and OF3b would
		discharge to the Western Watercourse and OF6
		would discharge to the extended culvert below Lea
		Road on Lady Head Runnel. Operational drainage
		discharges would likely be attenuated to greenfield

		runoff rates. Therefore, any impact on flow regimes			
		or to the channel bed and banks of the Western			
		Watercourse and Lady Head Runnel would be Minor			
		with a Slight significance of effect.			
	_	No operational discharges are entipipated on Soviek			
	-	Dreak and therefore as imposts are anticipated on Savick			
		Brook and therefore no impacts are anticipated.			
Changes in flow	•	The operation of the Scheme may lead to changes			
regime related to		in overland flow paths through alteration of local			
changes in		catchment topography due to new structures and			
overland flow		embankments associated with the design.			
paths	•	Additionally, an operational surface water drainage system would capture overland flows and divert them to treatment prior to release to surface water features at an attenuated rate. This has the potential to limit the volume of water entering the Central and Western Watercourses and Lady Head Runnel potentially leading to changes in fluvial process and features. The Central Watercourse was observed to lack discernible hydromorphological features and process and is possibly ephemeral. Desk-based assessment indicates limited hydromorphological features and processes on the Western Watercourse and Lady Head Runnel. Therefore, the impact on the Central and Western Watercourses and Lady Head Runnel would be Minor with a Slight significance of effect.			

Water Feature	Type of Impact	Importance	Magnitude	Significance
Central	Operation of new and	Low	Minor	Slight – not
Watercourse	extended culverts			significant
	Changes to flow	-	Negligible	Neutral – not
	regime and bed/bank			significant
	disturbance related to			
	operation of outfalls			
	Changes in flow		Minor	Slight – not
	regime related to			significant
	changes in overland			
	flow paths			
14/a at a rea	Changes to flow		Minor	Clight not
Western	ragime and had/hank	LOW	IVIIIIOI	Siight – hot
Watercourse	disturbance related to			Significant
	operation of outraits			
	Changes in flow	-	Minor	Slight – not
	regime related to			significant
	changes in overland			
	flow paths			
Lady Head	Operation of new and	Low	Minor	Slight – not
Runnel	extended culverts			significant
	Changes to flow		Minor	Slight – not
	regime and bed/bank			significant
	disturbance related to			
	operation of outfalls			

Table 11.36: Summary of hydromorphological operation impacts
	Changes in flow		Minor	Slight – not
	regime related to			significant
	changes in overland			
	flow paths			
Savick Brook	No Impacts	High	n/a	n/a
	anticipated			

Flood Risk

- 11.8.15 The FRA (Appendix 11.1) includes a full assessment of the potential impacts of the Scheme on flood risk. Potential general impacts during operation are provided in Table 11.37. A summary of operational works effects are provided in Table 11.38.
- 11.8.16 It is anticipated that the overall magnitude of impact on Flood Risk from the effects associated with the operational phase works would be negligible resulting in a significance of neutral. No additional essential mitigation is therefore required.

Type of Impact	Description
Change in flow	 The Scheme includes the replacement of the
regime through	existing 225mm culvert upstream of the railway
operation of new	culvert with a larger 900mm culvert that would tie
culverts	into the existing 975mm railway culvert. This would
	be designed to convey the 1% AEP + 30% design
	event. This would reduce the risk of fluvial flooding
	upstream of the proposed railway station and car
	park.

Table 11.37: Potential general impacts during operation

•	The replacement of the existing culvert with one
	with larger diameter would however have the
	potential to increase pass forward flows, which
	could increase the risk of flooding downstream.
	However, at present, flood flows that exceed the
	capacity of the existing 225mm culvert would still
	be able to enter the 975mm railway culvert as
	these are not continuous. Therefore, the existing
	225mm culvert would have a limited throttling
	effect on flows.
•	A residual risk of blockage or failure of the culvert
	would remain. However, this is an existing risk and
	management and maintenance as part of the
	proposed development is likely to reduce this
	residual risk albeit by a negligible magnitude.
•	The Lidar data and the RoFSW mapping indicate
	that the channel of the Central Watercourse
	downstream of the railway is deeply incised with a
	narrow floodplain. Therefore, any minor increase in
	peak flow through the culvert may increase flood
	depths in the channel but is unlikely to increase the
	extent of flooding. Also, the land-use downstream
	of the railway comprises golf courses and farmland
	with no highly vulnerable receptors identified.
	Therefore, any minor changes in flood extent
	would have a negligible consequence and the
	impact on flood risk would be negligible.
•	The proposed new culvert across Lady Head
	Runnel to enable the construction of the
	emergency area would be designed in accordance
	with CIRIA C786 and would convey the 1% AEP

	flow event including allowance for climate change.
	Therefore, the impact on fluvial flows would be
	negligible.
	 The proposed crossing downstream of the railway
	would have equal or greater capacity compared to
	the upstream culvert, the magnitude of the impact
	would therefore be negligible.
Changes in	 To manage the potential impacts of the increase in
surface water	impermeable surfaces on surface water and fluvial
runoff rate	flooding, a drainage strategy has been prepared to
	manage surface water runoff prior to discharge.
	This includes discharge to local ordinary
	watercourses at the greenfield runoff rate of
	6.5l/s/ha.
	 With this drainage strategy in place, any residual
	impacts would be limited to flood flows during
	rainfall events that exceed the capacity of the drain
	or in the event that the drainage system becomes
	blocked. A programme of maintenance and
	inspection would help to reduce the risk of
	blockages. Therefore, with the proposed drainage
	strategy in place, the magnitude of effects on
	fluvial and surface water flooding would be
	negligible and no additional mitigation is
	recommended.
Changes in	I ne construction of foundations has the potential to disrupt
Groundwater	groundwater flow and displace groundwater storage.
levels	However, due the limited groundwater held within the
	underlying strata and the limited extent of deep foundations,
	the magnitude of this potential impact has been assessed to

be negligible.

Table 11.38: Summary of flood risk operation impacts.

Water Feature	Type of Impact	Importance	Magnitude	Significance
Lady Head	Change in flow	High	Negligible	Slight – not
Runnel	regime through			significant
	operation of new			
Central	culverts	High	Negligible	Neutral - not
Watercourse				significant
Savick Brook	Changes in surface	Very High	Negligible	Slight – not
	water runoff rate			significant
Lady Head	-	High	Negligible	Slight – not
Runnel				significant
Central	-	High	Negligible	Slight – not
Watercourse				significant
Western		High	Negligible	Slight – not
Watercourse				significant
Surface water	-	Low	Negligible	Neutral - not
runoff				significant
Groundwater	Changes in	Low	Negligible	Neutral - not
flooding	groundwater levels			significant

Groundwater

- 11.8.17 During operation, it is considered likely that potential general impacts to groundwater features could arise from the following:
 - increased pollution risks from routine runoff during the operational life of the Scheme where it is not captured and discharged to in accordance with, or differing to, the drainage strategy. Potential substances would primarily consist of silts, hydrocarbons, and dissolved heavy metals, which may migrate to groundwater bodies. Of particular importance are natural drainage features which also may attenuate routine run-off, such as issues and sinks, which may be present and active in or near designated areas, or licensed and unlicensed groundwater abstractions;
 - increased pollution risks from accidental spillages of fuels and chemicals during the operational phase, for example due to road traffic accidents;
 - there is potential for the embankments proposed to result in groundwater stored in pore spaces in the superficial deposits (where present), to be squeezed out, causing the ground beneath the embankment to compress. Groundwater levels, flows, and quality in the superficial deposits, both underneath the embankment, and in its vicinity, could therefore be altered;
 - changes to groundwater levels, flows and quality, due to the presence of permanent below ground structures, such as foundations for bridge abutments and sheet piles, resulting in barriers to sub-surface flows, and/or providing new pathways for groundwater migration. This could lead to subsequent changes to groundwater levels, flows, quality, and locations of discharge points, for example to surface watercourses;
 - potential ongoing dewatering effects from subsurface structures that require permanent drainage. This may cause the groundwater table to

fall, impacting on groundwater receptors, as well as surface water flows and users; and

- permanent reduction in recharge rates due to the increased surface area of impermeable ground. However, the increased area of impervious surfaces is likely to be relatively small in comparison to the scale of most aquifer(s) being crossed.
- 11.8.18 Based on the receptors outlined in the baseline section, a summary of the significance of impacts relating to operational activities associated with the Scheme are summarised in Table 11.39. A full description of the permanent construction/operational impacts of each activity to support the magnitude of impact and significant effects assessment scoring is presented in Appendix A. of this chapter

Receptor	Activity	Importance	Magnitude	Significance
Glacial till Secondary	Sheet piling/piling/foundations	Medium	Minor Adverse	Slight
(undifferentiated)	of canal bridge, footbridge			
aquifer	and staircase and station			
	platform.			
Sherwood Sandstone		Very High	Negligible	Slight
Group Principal aquifer				
SPZ 3		Medium	No Impact	n/a
Issue for Lady Head		High	Negligible	Slight
Runnel				
Issue for Central		High	No Impact	n/a
Watercourse				
Three issues (outside		High	No Impact	n/a
study area)				

Table 11.39: Summary of operational impacts on groundwater receptors

Environmental Statement: Chapter 11 Water Environment

Receptor	Activity	Importance	Magnitude	Significance
Sink north of railway		High	Negligible	Slight
line				
Four sinks (outside		High	No Impact	n/a
study area)				
Historical wells (outside		High	No Impact	n/a
study area)				
Lancaster Canal, Lady		High	Negligible	Slight
Head Runnel and				
central watercourse				
	-			
Western Watercourse		High	Negligible	Slight
and Savick Brook				
Glacial till Secondary	Permanent drainage	Medium	Minor Adverse	Slight
(undifferentiated)	associated with excavations			
aquifer	for attenuation ponds and			

Receptor	Activity	Importance	Magnitude	Significance
Sherwood Sandstone	cuttings.	Very High	No Impact	n/a
Group Principal aquifer				
SPZ 3		Medium	No Impact	n/a
Jogua far Lady Haad		Lliab	Minor Advorag	Clight
		підп	Minor Adverse	Silgrit
Runnel				
Issue for Central	-	High	No Impact	n/a
Watercourse				
Watercourse				
Three issues (outside		High	No Impact	n/a
study area)				
Sink north of railway		High	Minor Adverse	Slight
line				
Four sinks (outside	1	High	No Impact	n/a
study area)				

Receptor	Activity	Importance	Magnitude	Significance
Historical wells (outside		High	No Impact	n/a
study area)				
Lancaster Canal, Lady		High	Minor Adverse	Slight
Head Runnel and				
central watercourse				
Western Watercourse		High	No Impact	n/a
and Savick Brook				
Glacial till Secondary	Permanent construction of	Medium	Minor Adverse	Slight
(undifferentiated)	embankments.			
aquifer				
Issue for Lady Head		High	Minor Adverse	Slight
Runnel				
Issue for Central		High	No Impact	n/a
Watercourse				

Receptor	Activity	Importance	Magnitude	Significance
Three issues (outside		High	No Impact	n/a
study area)				
	-			
Sink north of railway		High	Minor Adverse	Slight
line				
	-			
Four sinks (outside		High	No Impact	n/a
study area)				
Historical wells (outside		High	No Impact	n/a
study area)				
	-			
Lancaster Canal, Lady		High	Minor Adverse	Slight
Head Runnel and				
central watercourse				
	-			
Western Watercourse		High	Minor Adverse	Slight
and Savick Brook				

Receptor	Activity	Importance	Magnitude	Significance
Glacial till Secondary	Accidental spillages	Medium	Minor Adverse	Slight
(undifferentiated)	associated with			
aquifer	highways/traffic/car			
	park/railway movements.			
Sherwood Sandstone		Very High	No Impact	Slight
Group Principal aquifer				
SPZ 3		Medium	No Impact	n/a
Issue for Lady Head		High	Minor Adverse	Slight
Runnel				
Issue for Central		High	No Impact	n/a
Watercourse				
Three issues (outside		High	No Impact	n/a
study area)				
Sink north of railway		High	Minor Adverse	Slight

Receptor	Activity	Importance	Magnitude	Significance
line				
Four sinks (outside		High	No Impact	n/a
study area)				
Historical wells (outside		High	No Impact	n/a
study area)				
Lancaster Canal, Lady		High	Minor Adverse	Slight
Head Runnel and				
central watercourse				
Western Watercourse		High	Minor Adverse	Slight
and Savick Brook				

11.9 Cumulative Effects

Surface Water Quality

11.9.1 Relevant cumulative effects and impacts of surface water quality have been assessed via HEWRAT routine runoff assessments. Road runoff discharging into the Western Watercourse from both the Scheme and the PWDR have been assessed using a cumulative assessment. Once mitigation measures are considered, either proposed or currently in place, all aspects of HEWRAT are passed and the overall magnitude of impact of operational discharge on surface water quality is Negligible resulting in an overall Neutral significance of effect, i.e. non-significant with relevance to EIA Regulations.

Hydromorphology

11.9.2 With the inclusion of embedded mitigation measures as detailed within this chapter, no significant cumulative effects are anticipated as a result of the Scheme.

Flood Risk

11.9.3 A review of planning applications submitted, identifies that residential development are currently proposed by Story Homes adjacent to the Central Watercourse immediately north of the Scheme. These applications are currently at screening stage and no details of drainage design are available. However, any proposed developments would need to comply with the requirements of national and local policy with regard to flood risk. As such any developments within the study area would have a neutral impact on flood risk throughout their development life and therefore, there would be no potential for significant cumulative effects.

Groundwater

- 11.9.4 A review of planning applications submitted has been undertaken to determine the potential for cumulative groundwater impacts to be caused in the future. With the exception of the PWDR/East West Link Road and nearby housing development proposed by Story Homes, it is considered that there are no cumulative impacts when taking into account the proposed additional developments. This is due to distance of the proposed developments from the Scheme and the widespread presence of glacial till. The widespread presence of glacial till across the sites suggests the developments are unlikely to be in hydraulic continuity due to the perceived lack of significant groundwater pathway linkages. Consequently, all impacts related to the Scheme are anticipated to constrained to the immediate environments of the Scheme boundary.
- 11.9.5 The PWDR/East West Link Road is located directly north of the Scheme. However, given the presence of glacial till and lack of perceived shallow pathways this road development is also not expected to result in cumulative impacts to the water environment.
- 11.9.6 In contrast, the development proposed by Story Homes has a boundary which overlaps with the Scheme boundary. It is not envisaged that the housing development would require deep foundations or excavations that would impact the groundwater environment in the same way as currently indicated for the Scheme. Any impacts to the groundwater caused by the Scheme are also likely to equilibrate reasonably quickly, which subject to timing of the housing development construction should not be enhanced by, or damaging to the adjacent works. However, depending on the timing of construction, localised dewatering/de-pressurisation may result in the potential for differential settlement effects to extend between the sites, and such effects would need to be managed by the site developer(s) based on their understanding or the perceived risks and local ground conditions. If construction is concurrent, steps should be taken by both developers to ensure direct and/or indirect discharges to groundwater are law abiding and

suitably mitigated through complimentary material management and water management plans.

11.10 Mitigation

Construction

11.10.1 Mitigation is most effective if considered as an integral part of the Development design to avoid, reduce, or offset any adverse effects on the water or wider environment.

Surface Water Quality

11.10.2 No impacts of Moderate or above have been identified from the surface water quality impact assessment detailed in Section 11.7 for the construction phase should all embedded mitigations be adhered too.

Hydromorphology

11.10.3 The assessment of effects in Section 11.7 considers the application of both embedded mitigation and good practice measures. This assessment identified that all predicted impacts would be either neutral or slight. These are not considered to be significant and therefore no additional mitigation is necessary, and no residual impacts are predicted.

Flood Risk

11.10.4 The assessment of effects in Section 11.7 considers the application of both embedded mitigation and good practice measures. This assessment identified that all predicted impacts would be either neutral or slight with the exception of impacts on groundwater flooding during the construction phase. These negligible or slight impacts are not considered to be significant and therefore no additional mitigation is necessary and no residual impacts are predicted. The impacts on groundwater flooding are considered to be

potentially significant and essential mitigation relating to the management of groundwater during construction is detailed in Table 11.40.

<u>Groundwater</u>

- 11.10.5 Where piling is required for the construction of any structures, such as bridges and platforms, then a piling risk assessment in line with Environment Agency guidance (Environment Agency, 2006) would be required to confirm that preferential flow paths would not be created that lead to unacceptable impacts to Controlled Waters. Other below-ground works should also be considered and would need to be risk assessed in a similar way, prior to construction.
- 11.10.6 If temporary dewatering is required in order for construction activities to take place, such as for cuttings, embankment/bridge foundations, or excavations for attenuation ponds, a dewatering risk assessment should be undertaken to confirm acceptability of approach and any necessary additional mitigation, for example by following the hydrogeological impact appraisal for dewatering abstractions (Environment Agency, 2007).
- 11.10.7 A site walkover by the Contractor should be undertaken to determine the nature of the groundwater features identified in Table 11.40 to determine groundwater dependency. In conjunction with reviewing the detailed design for the Scheme and any ground investigation information, the Contractor should revise the impact appraisal by undertaking a hydrogeological risk assessment to determine whether any further additional mitigation is required to reduce significant effects to acceptable levels. In areas where a direct impact upon the groundwater receptors are predicted extra measures such as avoiding topsoil stripping in that area and erecting fencing around the feature should be considered based on the outcome of the site walkover. Local diversions of surface water flow paths sourced from groundwater may also need to be implemented.

- 11.10.8 The drainage design should take into consideration the presence of a Principal Aquifer and SPZ3 at depth across the study area when designing the drainage. Avoiding discharges to ground will reduce the risk of contaminants infiltrating into the groundwater.
- 11.10.9 Subject to the above additional mitigation being completed, the residual significance of the effects that require additional mitigation to be applied should reduce to slight and/or neutral.

Operation

Surface Water Quality

11.10.10 No impacts of Moderate or above have been identified from the surface water quality impact assessment detailed in Section 11.8 for the operation phase should all embedded mitigations be adhered too.

Hydromorphology

11.10.11 The assessment of effects in Section 11.8 considers the application of both embedded mitigation and good practice measures. This assessment identified that all predicted impacts would be either neutral or slight. These are not considered to be significant and therefore no additional mitigation is necessary and no residual impacts are predicted.

Flood Risk

11.10.12 The assessment of effects considers the application of both embedded mitigation and good practice measures. This assessment identified that all predicted impacts during the operational phase would be either neutral or slight. These negligible or slight impacts are not considered to be significant and therefore no additional mitigation is necessary and no residual impacts are predicted.

Mitigation	Approximate	Timing of	Responsible Party	Description	Mitigation	Specific	Monitoring
ltem	Location	Measure	for		Purpose/	Consultation	Measure for
Reference			Implementation		Objective	or Approval	the
						Required	Suggested
							Mitigation
W1	Throughout	Construction	Main Contractor	Implementation	Protect the	Environment	A suitably
				of CEMP to	water	Agency	qualified and
				include	environment		experienced
				embedded	during		Environment
				mitigations	construction		Clerk of Work
				detailed in			shall be
				Section 11.7			appointed by
							the Contractor
W2	At proposed	Construction	Main Contractor	Piling risk	Protect	Environment	to oversee the
	bridge and			assessment	groundwater	Agency	implementation
	station				from		of mitigation
	location				contamination		and monitoring
							of the water
W3	At proposed	Construction	Main Contractor	Dewatering risk	Protect	Environment	
	attenuation				groundwater		

 Table 11.40: Summary of essential mitigation measures

	pond and			assessment	features	Agency	environment.
	underground						
	storage area						
	and areas of						
	cuttings						
W4	Throughout,	Construction	Main Contractor	Site walkover	Protect	Environment	
	where			to determine	groundwater	Agency	
	groundwater			nature of any	features		
	features have			groundwater			
	been			features and			
	identified			undertaking a			
				hydrogeological			
				risk			
				assessment			

11.11 Summary

Surface Water Quality

11.11.1 No significant effects on surface water quality are anticipated during the construction and operational phases, provided prescribed mitigation is adhered to.

Hydromorphology

11.11.2 No significant effects on hydromorphology are anticipated during the construction and operational phases, provided prescribed mitigation is adhered to.

Flood Risk

- 11.11.3 A FRA identified that the Scheme would need to consider flood risk from and impacts to fluvial flooding, surface water, groundwater, and canals. However, it the development has been located within Flood Zone 1 after a sequential approach to site selection has been applied and is generally at low risk from other sources identified. As the Scheme would be classified as Essential Infrastructure, its location within Flood Zone 1 is considered to be appropriate within planning practice guidance.
- 11.11.4 Embedded mitigation and good practice including the appropriate design of a new culvert to convey the Central Watercourse beneath the new station and a surface water management system based on SuDS would ensure the Scheme is safe from flooding without increasing the risk of flooding elsewhere. Therefore, it would comply with the requirements of the NPPF and with the requirements of local planning policies and guidance.

Groundwater

11.11.5 No residual significant effects to groundwater are anticipated during the construction and operational phases, provided embedded and additional mitigation is implemented.

11.12 References

British Geological Survey (2012) Preston, England and Wales Sheet, 75, Solid and Drift Edition. 1:50,000. Keyworth, Nottingham: British Geological Survey.

British Geological Survey (2020a) BGS GeoIndex, [Online] Available at: http://mapapps2.bgs.ac.uk/geoindex/home.html (Accessed September 2021).

British Geological Survey (2020b) BGS Lexicon, [Online] Available at: http://www.bgs.ac.uk/lexicon/ (Accessed September 2021).

British Geological Survey (2020c) Groundwater vulnerability data, [Online] Available at: https://www.bgs.ac.uk/products/hydrogeology/GroundwaterVulnerability.html (Accessed September 2021).

Central Lancashire Biodiversity and Nature Conservation Supplementary Planning Document (2015). [Online] Available at: https://www.southribble.gov.uk/media/120/Biodiversity-and-Nature-Conservation-/pdf/Final_Biodiversity_and_Nature_Conservation_SPD_-_July_2015.pdf?m=63736981932777000 (Accessed May 2022).

Construction Industry Research and Information Association (2010). Culvert Design and Operation Guide, CIRIA C689.

Construction Industry Research and Information Association (2001). Control of water pollution from construction sites. Guidance for consultants and contractors, CIRIA C532.

Construction Industry Research and Information Association (2015). The SuDS Manual, CIRIA C753.

Construction Industry Research and Information Association (2016). Groundwater Control: Design and Practice, CIRIA C750.

Construction Industry Research and Information Association (2019). Culvert, screen and outfall manual, CIRIA C786.

Department for Environment, Food and Rural Affairs (Defra) (2021). Magic Map Application. [Online] Available at: https://magic.defra.gov.uk/MagicMap.aspx. (Accessed September 2021). Environment Agency (2006). Piling in layered ground: risks to groundwater and archaeology. [Online] Available at:

https://www.gov.uk/government/publications/piling-in-layered-ground-risks-to-groundwater-and-archaeology (Accessed May 2022).

Environment Agency (2007). Hydrogeological impact appraisal for dewatering abstractions. [Online] Available at:

https://www.gov.uk/government/publications/hydrogeological-impact-appraisal-fordewatering-abstractions (Accessed May 2022).

Environment Agency (2009). Ribble Catchment Flood Management Plan. [Online] Available at: https://www.gov.uk/government/publications/ribble-catchment-flood-management-plan. (Accessed May 2022).

Environment Agency (2017a). Protect Groundwater and prevent groundwater pollution [Online] Available at: https://www.gov.uk/government/publications/protect-groundwater-and-prevent-groundwater-pollution/protect-groundwater-and-prevent-groundwater-pollution (Accessed September 2021).

Environment Agency: Preliminary flood risk assessment: Lancashire County Council (2017b). [Online] Available at:

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attach ment_data/file/698402/PFRA_Lancashire_County_Council_2017.pdf (Accessed: March 2021).

Environment Agency (2018). Groundwater source protection zones (SPZs) [Online] Available at: https://www.gov.uk/guidance/groundwater-source-protection-zonesspzs (Accessed September 2021).

Environment Agency (2021a). Flood map for planning. [Online] Available at: https://flood-map-for-planning.service.gov.uk/ (Accessed: March 2021).

Environment Agency (2021b). Risk of Flooding from Surface Water Mapping. [Online] Available at: https://flood-warning-information.service.gov.uk/long-term-flood-risk/map (Accessed March 2021).

Environment Agency (2021c). Catchment Data Explorer [Online] Available at: https://environment.data.gov.uk/catchment-planning (Accessed October 2021).

Environment Agency (2021d). The Water Quality Archive (WIMS) [Online] Available at: https://environment.data.gov.uk/water-quality/view/landing (Accessed October 2021).

Groundsure (2020). Enviro Insight Cottam Parkway.

Highways England, Transport Scotland, Welsh Government and The Department for Infrastructure Northern Ireland (2020a). DMRB LA 113: Road Drainage and the Water Environment (formerly HD 45/09), Revision 1.

Highways England, Transport Scotland, Welsh Government and The Department for Infrastructure Northern Ireland (2020b). DMRB LA 104: Environment assessment and monitoring (formerly HA 205/08, HD 48/08, IAN 125/15, and IAN 133/10), Revision 1.

National Highways (2019). Highways England Water Risk Assessment Tool (HEWRAT) Excel Spreadsheet Software, Version 2.0.4.

Highways England, Transport Scotland, Welsh Government, Department for Infrastructure (2020c). DMRB LA 108: Design Manual for Roads and Bridges, Volume 11 Environmental Assessment, Section 3 Environmental Assessment Techniques, Part 4, Biodiversity, revision 1 March 2020.

Ian Farmers Associates (IFA) (2015). Preston Western Distributor Road Preston: Factual Report on Ground Investigation.

Ian Farmers Associates (IFA) (2016). Preston Western Distributor Structures: Factual Report on Ground Investigation.

Lancashire County Council and Blackpool

Council (2013). Lancashire and Blackpool Local Flood Risk Management Strategy. [Online] Available at: https://www.lancashire.gov.uk/media/900474/lancashire-andblackpool-local-flood-risk-management-strategy-consultation-draft.pdf. (Accessed March 2021).

Lancashire County Council (2021). Cottam Parkway Access Bridge and Road Preliminary Sources Study Report.

Lancashire County Council (2021b). Cottam Parkway Access Bridge and Embankment GIR Report.

Lancashire County Council (2021a). Cottam Parkway Access Road and Car Park GIR Report.

Ministry of Housing, Communities and Local Government (2021). National Planning Policy Framework. [Online] Available at:

https://www.gov.uk/government/publications/national-planning-policy-framework--2 (Accessed October 2021).

Ministry of Housing, Communities & Local Government: Flood Risk and Coastal Change Guidance (2021). [Online] Available at: https://www.gov.uk/guidance/flood-risk-and-coastal-change#flood-zone-and-flood-risk-tables (Accessed May 2022).

Preston City Council, South Ribble Borough Council and Chorley Borough Council: Central Lancashire Strategic Flood Risk Assessment Level 1 (2007). [Online] Available at: https://chorley.gov.uk/media/625/Central-Lancashire-Strategic-Flood-Risk-Assessment-

2007/pdf/Strategic_Flood_Risk_Assessment_v1.pdf??m=63738455274600000&cc p=true#cookie-consent-prompt (Accessed March 2021). Preston City Council: Preston Local Plan 2012-2026 (Site Allocations) (2015). [Online] Available at: https://www.preston.gov.uk/media/1952/Preston-s-Local-Plan/pdf/Preston-Local-Plan-2012-2026-_8.pdf?m=637056240884300000 (Accessed March 2021).

Preston City Council, Chorley Council and South Ribble Council: Central Lancashire Core Strategy (2012). [Online] Available at: https://www.preston.gov.uk/article/1194/Central-Lancashire-Core-Strategy-(Accessed March 2021).

Preston City Council, South Ribble Borough Council and Chorley Council: Central Lancashire Local Plan (2022). [Online] Available at: https://centrallocalplan.lancashire.gov.uk/about/ (Accessed: March 2021).

Wallingford HydroSolutions (2021). LowFlows Estimation Service.

Appendix A: Groundwater Assessment

Table A.1 Temporary Construction Significant Effect Assessment

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
Glacial till	Medium	Piling/	Due to low permeability of glacial till and absence	Moderate	Moderate
Secondary		foundations of	of defined water table the works are unlikely to	Adverse	
(undifferentiated)		canal bridge,	intersect a water table, therefore ground flow or		
aquifer		footbridge and	quality is unlikely to be impacted. However, where		
		staircase and	discrete horizons of groundwater bearing material		
		station platform.	occur in vertical sequence it might be that piling		
			could breach the aquitard(s) and connect two		
			previously discrete aquifers. However, such		
			horizons are unlikely to be laterally		
			extensive/continuous with significant resource		
			value, or providing baseflow to rivers.		
			Where sheet piling is proposed there is possibility		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
			for barriers to created perpendicular to localised		
			groundwater flow pathways leading to mounding of		
			groundwater and possible emergence on up-		
			gradient side and reduction in baseflow on down-		
			gradient side.		
			This would need to be confirmed at detailed design		
			stage based on further GI and confirmation of		
			finalised piling depths; in the meantime moderate		
			impacts cannot be discounted.		
			Due to absence of known contamination there is		
			unlikely to be a risk of migration of contaminants		
			along the annulus of the pile in the temporary		
			condition. However, application of CCoP		
			embedded mitigation should ensure the impacts of		
			such activities are not significant.		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
		Excavation of	Due to low permeability of glacial till and absence	Moderate	Moderate
		attenuation	of defined water table the works are unlikely to	Adverse	
		pond for the	intersect a water table, therefore ground flow or		
		new road and	quality is unlikely to be impacted. However, where		
		roundabout,	discrete horizons of groundwater bearing material		
		and	occur there is a possibility that any excavations		
		underground	could intercept these groundwater bearing layers.		
		attenuation	Where this this is the case there is the potential		
		pond.	risk for groundwater inflow into shallow foundations		
			and the excavation base. Groundwater held in		
		Excavation of	permeable horizons at depth may also be		
		cutting for road	pressurised and result in artesian conditions at		
		at bridge.	surface when penetrated.		
		Culvert	Groundwater control may therefore be necessary		
		extension.	in some construction locations. However, due to		
			the fact that groundwater bearing horizons are		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
			likely to be localised, there is unlikely to be any far-		
			reaching implications for the aquifer resource in		
			terms of groundwater quality and/or flow when		
			dewatered/depressurised.		
			This would need to be confirmed at detailed design		
			stage based on further GI and confirmation of final		
			excavation depths; in the meantime moderate		
			impacts cannot be discounted.		
			Where groundwater exists and if intercepted by		
			excavations there is a risk of accidental leaks and		
			spills from the works could enter groundwater,		
			failing that indirectly through infiltration. However,		
			application of the CoCP embedded mitigation		
			should ensure the impacts of such activities are		
			not significant.		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
		Construction of	Compaction effects are a result of material build up	Minor	Slight
		embankments.	for the embankments could reduce storage within	Adverse	
			the aquifer. Local infiltration and recharge could		
			also be reduced by such activities. However, as		
			the glacial till is unlikely to be significantly		
			groundwater bearing such that any impacts are		
			considered to be minor.		
		Compound	Disturbances could occur to groundwater flow from	Minor	Slight
		area and	temporary below ground structures and/or shallow	Adverse	
		access routes	excavations that do not required dewatering (e.g.		
		construction	topsoil stripping). This could also impact		
		and material	groundwater levels and/or quality locally due to		
		storage areas-	changes in recharge. However, due to the low		
		including	permeability of the glacial till and the absence of a		
		vegetation	defined water table there is less propensity for		
		clearance,	shallow groundwater bearing horizons to be		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
		topsoil stripping	present. Any impacts to the aquifer from the		
		and	construction and laydown areas as well as access		
		compaction.	roads is also likely to be isolated with no far-		
			reaching implications to the aquifer resource as a		
			whole.		
			The material storage areas and the movements of		
			heavy plant vehicles have the potential to reduce		
			the pore space and change the magnitude and		
			direction of flow in any underlying shallow		
			groundwater bearing horizons. However, this is		
			also likely to be localised due to the discontinuous		
			nature of permeable deposits.		
			Where shallow groundwater exists and if		
			intercepted by the temporary works there is a risk		
			of accidental leaks and spills from the works could		
			enter groundwater, failing that indirectly through		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
			infiltration. However, application of the CoCP		
			embedded mitigation should ensure the impacts of		
			such activities are not significant.		
Sherwood	Very High	Piling/	It is assumed that piling will be shallow and should	Negligible	Slight
Sandstone		foundations of	not intersect the Principal aquifer, which is > c.30m		
Group Principal		canal bridge,	below ground level. Therefore the ability for		
aquifer		footbridge and	potential pollutant pathways to be created should		
		staircase and	be avoided as piling shall remain above the		
		station platform.	groundwater bearing zone.		
		Sheet pile wall	Furthermore, as the piling will not intersect the		
		extending along	Principal aquifer the ability to connect discrete		
		the canal for full	groundwater bearing horizons within the glacial till		
		length of the	with the underlying sandstone should be avoided		
		proposed	thereby avoiding any changes to groundwater flow		
		bridge.	and/or quality within the Principal aquifer.		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
		Excavation of	It assumed that any excavations will be shallow	No Impact	n/a
		attenuation	and not intersect confined groundwater within the		
		pond for the	Sherwood Sandstone Group. Consequently,		
		new road and	groundwater control in the Principal aquifer will not		
		roundabout,	be required.		
		and			
		underground			
		attenuation			
		pond.			
		Culvert			
		extension.			
SPZ 3	Medium	Piling/	As above for Sherwood Sandstone Group Principal	Negligible	Neutral
		foundations of	aquifer.		
		canal bridge,			
		footbridge and			
		staircase and			

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
		station platform.			
		Sheet pile wall			
		extending along			
		the canal for full			
		length of the			
		proposed			
		bridge.			
		Excavation of	As above for Sherwood Sandstone Group Principal	No Impact	n/a
		attenuation	aquifer.		
		pond for the			
		new road and			
		roundabout,			
		and			
		underground			
		attenuation			

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
		pond			
		Excavation of			
		cutting for road			
		at bridge			
		Culvert			
		extension			
lecuo for Lody	High	Piling for	Considering the nature of the groundwater within	Nogligible	Slight
	підп			Negligible	Siight
Head Runnel		footbridge and	the glacial till, any impacts from piling is likely to be		
		staircase.	localised to the area surrounding the piles and		
			therefore is highly unlikely to impact the issue.		
		Excavations for	Excavations for the underground attenuation pond	Minor	Moderate
		attenuation	could require dewatering therefore the issue could	Adverse	
		ponds and	be impacted by this due to its location nearby.		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
		cuttings.	Extension of the culvert may also result in a		
			reduced flow at the issue while construction is		
		Culvert	ongoing.		
		extension.			
		Construction of	Compaction from the construction of embankments	Minor	Slight
		embankments	may affect baseflow towards the issue although	Adverse	
			this is not likely to be significant given the low		
			permeability of the glacial till. Given the unknown		
			nature of this sink minor impacts cannot be		
			discounted.		
		Compound	Considering the direct nature of the works at this	Major	Very Large
		area and	location it is likely that the issue will be directly		
		access routes	impacted by the construction of the construction		
		construction	and laydown areas as well as access roads. Any		
		and material	groundwater emergence may need to diverted in		
		storage areas-	the temporary conditions to ensure any receiving		
Receptor	Importance	Design	Impact Description	Magnitude	Significance
-------------------	------------	-------------------	---	-----------	--------------
		Element/			
		Activity			
		including	downstream water receptors are not impacted.		
		vegetation			
		clearance,	This would need to be confirmed at detailed		
		topsoil stripping	design stage based on further GI and		
		and	confirmation of finalised excavation depths; in		
		compaction.	the meantime minor impacts cannot be		
			discounted.		
			Where shallow groundwater exists and if		
			intercepted by the temporary works there is a risk		
			of accidental leaks and spills from the works could		
			enter groundwater, failing that indirectly through		
			infiltration. However, application of the CoCP		
			embedded mitigation should ensure the impacts of		
			such activities are not significant.		
Issue for Central	High	Piling	Considering the nature of the groundwater within	No Impact	n/a
			the glacial till, any impacts from piling is likely to be		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
Watercourse			localised to the area surrounding the piles and		
			therefore is highly unlikely to impact the issue.		
		Excavations for	This issue is located far enough from the works	Negligible	Slight
		attenuation	that no impacts from excavations or embankments		
		ponds and	are expected due to the impermeable nature of the		
		cuttings.	glacial till, which creates limited opportunities for		
			impacts to be far reaching from their source.		
		Construction of		Negligible	Slight
		embankments			
		Compound	The site is located adjacent to the issue therefore	Minor	Slight
		area and	the receptor could experience minor impacts to	Adverse	
		access routes	groundwater flow and/or quality during construction		
		construction	of the construction and laydown areas as well as		
		and material	access roads, albeit this is not likely to be		
		storage areas-	significant due to the low permeability of the glacial		
		including			

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
		vegetation	till.		
		clearance,			
		topsoil stripping	Where shallow groundwater exists and if		
		and compaction	intercepted by the temporary works there is a risk		
			of accidental leaks and spills from the works could		
			enter groundwater, failing that indirectly through		
			infiltration. However, application of the CoCP		
			embedded mitigation should ensure the impacts of		
			such activities are not significant.		
Three issues	High	All activities	The issues are located outside the Scheme	No Impact	n/a
			boundary and significantly far from the proposed		
			construction activities. Consequently, they are		
			considered unlikely to be impacted from the		
			Scheme.		
Sink north of	High	Piling	Considering the nature of the groundwater within	No Impact	n/a
			the glacial till, any impacts from piling is likely to be		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
railway line			localised to the area surrounding the piles. Given		
			the distance of the sink from the proposed piling no		
			impacts are expected at the sink location.		
		Excavations for	This sink is located within the Scheme boundary	Minor	Moderate
		attenuation	and proximal to these works. Where dewatering	Adverse	
		ponds and	associated with the excavations is required then		
		cuttings.	the sink could be impacted by a reduction in		
			groundwater level or flow.		
		Construction of	Compaction from the construction of embankments	Minor	Slight
		embankments	may affect baseflow towards the sink although this	Adverse	
			is not likely to be significant given the low		
			permeability of the glacial till. Given the unknown		
			nature of this sink minor impacts cannot be		
			discounted.		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
		Compound	There is the potential for the sink to be blocked	Moderate	Moderate
		area and	during construction which could lead to a build-up	Adverse	
		access routes	of surface water that impacts the construction and		
		construction	logistic operation. Given the unknown nature of		
		and material	this sink and relationship to a range of construction		
		storage areas-	activities, moderate impacts cannot be discounted		
		including	at this stage.		
		vegetation			
		clearance,	This would need to be confirmed at detailed design		
		topsoil stripping	stage based on further GI and confirmation of		
		and compaction	finalised excavation depths; in the meantime minor		
			impacts cannot be discounted.		
			Where shallow groundwater exists and if		
			intercepted by the temporary works there is a risk		
			of accidental leaks and spills from the works could		
			enter groundwater, failing that indirectly through		
			infiltration. However, application of the CoCP		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
			embedded mitigation should ensure the impacts of		
			such activities are not significant.		
Four sinks	High	All activities	The sinks are located outside the Scheme	No Impact	n/a
			boundary and significantly far from the proposed		
			construction activities. Consequently, they are		
			considered unlikely to be impacted from the		
			Scheme.		
Historical wells	High	Piling	All historical wells are located outside the Scheme	Negligible	Slight
			boundary but within 1.0km of the site. It is likely		
		Excavations for	that all historical wells draw groundwater from the		
		attenuation	underlying Sherwood Sandstone Group principal		
		ponds and	aquifer, or from discrete horizons with the glacial		
		cuttings.	till that are unlikely to connected to the temporary		
			site construction activities. Consequently all		
		Construction of			

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
		embankments	activities are likely to result in negligible impacts.		
		Compound			
		area and			
		access routes			
		construction			
		and material			
		storage areas-			
		including			
		vegetation			
		clearance,			
		topsoil stripping			
		and compaction			
Lancaster Canal,	High	Piling	The contribution of groundwater as baseflow is	Negligible	Slight
Lady Head			unknown. Any impacts from piling are likely to be		
Runnel and		Excavations for	localised to the area surrounding the piles however	Moderate	Moderate
Central		attenuation	considering that sheet piling is proposed within the		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
Watercourse		ponds and	canal impacts to baseflow could occur as		
		cuttings.	groundwater is known to ingress into the Canal.		
			The installation of sheet piling may create a low		
			permeability barrier to groundwater therefore could		
			reduce the baseflow contributions to the Lancaster		
			Canal. However, given the extent of the piling		
			compared to the length of the canal any impacts		
			will be negligible.		
			Other piling within the site is likely to have		
			localised impacts contained to the area		
			surrounding the piles and therefore given the		
			distance of the watercourses from the piling, any		
			impacts to groundwater should equilibrate before		
			the watercourse is reached.		
			The contribution of groundwater as baseflow is		
			unknown. However, given the propensity for the		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
			glacial till to transmit limited quantities of		
			groundwater, then baseflow contributions are likely		
			to be small. However, any potential dewatering		
			from the excavations has the potential to limit the		
			baseflow in the watercourses if it lies within the		
			zone of influence, which in turn could reduce the		
			flow and/or quality in the surface water features.		
			This would need to be confirmed at detailed		
			design stage based on further GI and		
			confirmation of finalised excavation depths; in		
			the meantime moderate impacts cannot be		
			discounted.		
		Construction of	Compaction from the construction of embankments	Minor	Slight
		embankments.	may affect baseflow towards the watercourse	Adverse	
			although this is not likely to be significant given the		
			low permeability of the glacial till. Given the		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
			unknown baseflow connection minor impacts		
			cannot be discounted.		
		Compound	The contribution of groundwater as baseflow is	Minor	Sight
		area and	unknown. However, given the propensity for the	Adverse	
		access routes	glacial till to transmit limited quantities of		
		construction	groundwater, then baseflow contributions are likely		
		and material	to be small. There are unlikely to be any deep		
		storage areas-	excavations associated with construction and		
		including	laydown areas/ access roads. Therefore any		
		vegetation	impacts to groundwater are expected to be limited.		
		clearance,			
		topsoil stripping			
		and compaction			
Western	High	Piling	The contribution of groundwater as baseflow is	No Impact	n/a
Watercourse			unknown. Any impacts from piling is likely to be		
and Savick			localised to the area surrounding the piles. Given		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
Brook			the distance of the watercourses from the piling no		
			impacts are expected.		
		Excavations for	The contribution of groundwater as baseflow is	No Impact	n/a
		attenuation	unknown, however considering the nature of the		
		ponds and	glacial till any input from groundwater is likely to be		
		cuttings.	limited. Any dewatering from the excavations has		
			the potential to limit the baseflow in the		
			watercourse if it lies within the zone of influence,		
			which in turn could reduce the flow in the river.		
			Given the distance of these watercourses from the		
			site impacts from dewatering are expected to		
			equilibrate before the rivers.		
		Construction of	Compaction from the construction of embankments	Minor	Slight
		embankments.	may affect baseflow towards the watercourse	Adverse	
			although this is not likely to be significant given the		
			low permeability of the glacial till. Given the		

Receptor	Importance	Design	Impact Description	Magnitude	Significance
		Element/			
		Activity			
			unknown baseflow connection minor impacts		
			cannot be discounted.		
		Compound	The contribution of groundwater as baseflow is	Negligible	Slight
		area and	unknown, however considering the nature of the		
		access routes	glacial till any input from groundwater is likely to be		
		construction	limited. There are no deep excavations associated		
		and material	with the compound construction therefore given		
		storage areas-	the distance of these watercourse from the site		
		including	negligible are expected.		
		vegetation			
		clearance,			
		topsoil stripping			
		and compaction			

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
Glacial till	Medium	Sheet piling/ piling/	The introduction of piles in the ground may	Minor	Slight
Secondary A		foundations of	reduce groundwater storage and could result in	Adverse	
aquifer		canal bridge,	water level changes to facilitate movement of		
		footbridge and	groundwater around these impermeable		
		staircase and	structures. Under such circumstances		
		station platform.	groundwater flow paths could be impacted.		
			Interaction with piles/sheet piles may also cause		
			localised changes in water quality. However,		
			due to low permeability of the glacial till and		
			given its areal extent is much greater than the		
			proposed works, any impacts on groundwater		
			flow and/or quality is likely to be minimal.		
			Where groundwater exists, this is likely to be in		
			discrete horizons, which would equilibrate		
			reasonably quickly following installation of piles/		
			sheet piles and unlikely to have far-reaching		
			implications for groundwater flow and/or quality,		

Table A.2 Permanent Construction and Operation Significant Effect Assessment

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
			as such pathways should not exist. However,		
			due to the uncertainties and lack of GI, minor		
			impacts cannot be discounted.		
		Everyotics of	The presence of the ottopustion pend could	Ndinor	Oliabá
		Excavation of	The presence of the attenuation pond could	winor	Slight
		attenuation pond	result in reduced storage and localised water	Adverse	
		for the new road	level changes to facilitate movement of		
		and roundabout,	groundwater around the pond. Under such		
		and underground	circumstances groundwater flow paths could be		
		attenuation pond.	impacted. If unlined there is the potential for		
			interactions between any groundwater bearing		
			horizons within the glacial till and the content of		
			the attenuation pond which could change the		
			chemistry of the groundwater. However, due to		
			the discrete nature of groundwater bearing		
			horizons any changes would not have any far-		
			reaching implications as such pathways should		
			not exist.		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
			Long-term drainage of excavations could		
			change groundwater flow and draw in		
			contamination from spillages which has a knock-		
			on effect to watercourses, although due to low		
			permeability of the glacial till far reaching		
			drainage effects (where present) are not		
			anticipated.		
		Permanent	The presence of the embankments could cause	Minor	Slight
		construction of	consolidation of the materials underneath the	Adverse	
		embankments.	embankment, which may cause the ground		
			beneath the structure to compress affecting		
			groundwater storage, pore-water pressure		
			distribution, and magnitude and direction of		
			groundwater flow within the groundwater bearing		
			horizons. However such horizons are unlikely to		
			be laterally extensive and continuous therefore		
			any impacts will be localised.		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		Highways/ traffic/	Increased pollution risks from routine runoff and	Minor	Slight
		car park/ railway	accidental spillages of fuels and chemicals	Adverse	
		movements.	during the operational phase could directly		
			impact the underlying aquifer, given the direct		
			nature of this minor impacts to groundwater		
			quality could arise. However, given the localised		
			nature of the groundwater in more permeable		
			horizons any contamination would be isolated.		
Sherwood	Very High	Piling/sheet piling/	The introduction of piles in the ground may	Negligible	Slight
Sandstone		foundations of	reduce groundwater storage and could result in		
Principal		canal bridge,	water level changes to facilitate movement of		
aquifer		footbridge and	groundwater around these impermeable		
		staircase and	structures. However, given the depth of the		
		station platform.	Sherwood Sandstone Principal aquifer and the		
			protection offered by the overlying glacial till,		
			negligible impacts are predicted as piles are not		
			expected to intercept the sandstone.		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		Excavations for	Given the depth of the Sherwood Sandstone	No Impact	n/a
		attenuation ponds	Principal aquifer, no long-term impacts are		
		and cuttings.	expected from the installation of underground		
			attenuation storage, as this will be located within		
			the overlying glacial till.		
		Highways/ traffic/	Increased pollution risks from routine runoff and	No Impact	n/a
		car park/ railway	accidental spillages of fuels and chemicals		
		movements.	during the operational phase are unlikely to		
			reach the Sherwood Sandstone Principal aquifer		
			given its depth underneath the glacial till and the		
			lack of vertical pathways.		
SPZ 3	Medium	Piling/ sheet piling/	The introduction of piles in the ground may	No Impact	n/a
		foundations of	reduce groundwater storage and could result in		
		canal bridge,	water level changes to facilitate movement of		
		footbridge and	groundwater around these impermeable		
		staircase and	structures. However, given the depth of the		
			Sherwood Sandstone Principal aquifer and the		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		station platform.	protection offered by the overlying glacial till,		
			negligible impacts are predicted as piles are not		
			expected to intercept the sandstone which the		
			SPZ relates.		
		Excavations for	Given the SPZ relates to groundwater	No Impact	n/a
		attenuation ponds	abstraction in the Sherwood Sandstone Principal		
		and cuttings.	aquifer, no long-term impacts are expected from		
			the installation of underground attenuation		
			storage as this will be located within the		
			overlying glacial till.		
		Highways/ traffic/	Increased pollution risks from routine runoff and	No Impact	n/a
		car park/ railway	accidental spillages of fuels and chemicals		
		movements.	during the operational phase are unlikely to		
			reach the SPZ given its depth underneath the		
			glacial till which will offer sufficient protection.		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
Issue of Lady	High	Piling for footbridge	The introduction of piles in the ground may	Negligible	Slight
Head Runnel		and staircase.	reduce groundwater storage and could result in		
			water level changes to facilitate movement of		
			groundwater around these impermeable		
			structures. However, due to low permeability of		
			the glacial till and given its areal extent is much		
			greater than the proposed works, any impacts		
			on groundwater flow and/or quality is likely to be		
			localised and reach equilibrium with surrounding		
			receptors quickly.		
			The piling is unlikely to have far-reaching		
			implications for groundwater flow and/or quality,		
			as such pathways should not exist, therefore the		
			quality of groundwater at the issue should not be		
			impacted.		
		Excavations for	Long-term drainage of excavations could	Minor	Slight
		attenuation ponds	change the groundwater flow and draw in		

• 163 •	

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		and cuttings.	contamination from spillages. Given the close	Adverse	
			proximity of the issue to the proposed station		
			changes to groundwater flow and quality at the		
			issue could be observed if a pathway is present		
			which in turn would impact the watercourse,		
			however any such impacts are likely to be minor.		
		Permanent	The presence of the embankments could cause	Minor	Slight
		construction of	consolidation of the materials underneath the	Adverse	
		embankments.	embankment, which may cause the ground		
			beneath the structure to compress affecting		
			groundwater storage, pore-water pressure		
			distribution, and magnitude and direction of		
			groundwater flow within the groundwater bearing		
			horizons. However, such horizons are unlikely to		
			be laterally extensive and continuous therefore		
			any impacts will be localised. Given the close		
			proximity of this issue impacts cannot be		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
			discounted, but not expected to be significant.		
		Highways/ traffic/	Increased pollution risks from routine runoff and	Minor	Slight
		car park/ railway	accidental spillages of fuels and chemicals	Adverse	
		movements.	during the operational phase could impact		
			groundwater quality within the vicinity of the		
			issue given its close proximity to the road.		
Issue of Central	High	Piling.	Given the distance of the issue from the Scheme	No Impact	n/a
Watercourse			boundary no long-term impacts are predicted		
			due to the localised nature of any piling impacts.		
		Excavations for	Given the distance from the Scheme boundary,	No Impact	n/a
		attenuation ponds	no long-term impacts are expected.		
		and cuttings.			
		Permanent	Given the distance from the Scheme boundary,	No Impact	n/a
		construction of	impacts from embankments are likely to		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		embankments.	equilibrate before the issue is reached.		
		Highways/traffic/car park/railway movements.	Given the distance from the works, no increased pollution risks are predicted at these locations.	No Impact	n/a
3 issues	High	Piling Excavations for attenuation ponds and cuttings	Given the distance from the Scheme boundary, no long-term impacts are expected.	No Impact	n/a
		Permanent construction of embankments. Highways/traffic/car park/railway			

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		movements.			
Sink north of	High	Piling	The introduction of piles in the ground may	Negligible	Slight
railway line			reduce groundwater storage and could result in		
			water level changes to facilitate movement of		
			groundwater around these impermeable		
			structures. However, due to low permeability of		
			the glacial till and given its areal extent is much		
			greater than the proposed works, any impacts		
			on groundwater flow and/or quality is likely to be		
			localised and reach equilibrium with surrounding		
			receptors quickly.		
			The piling is unlikely to have far-reaching		
			implications for groundwater flow and/or quality,		
			as such pathways should not exist, therefore the		
			quality of groundwater at the sink should not be		
			impacted.		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		Excavations for	Long-term drainage of excavations could	Minor	Slight
		attenuation ponds	change the groundwater flow and draw in	Adverse	
		and cuttings	contamination from spillages. Changes to		
			groundwater flow and quality at the sink could		
			be observed if a pathway is present, however		
			any such impacts are likely to be minor.		
		Permanent	The presence of the embankments could cause	Minor	Slight
		construction of	consolidation of the materials underneath the	Adverse	
		embankments.	embankment, which may cause the ground		
			beneath the structure to compress affecting		
			groundwater storage, pore-water pressure		
			distribution, and magnitude and direction of		
			groundwater flow within the groundwater bearing		
			horizons. However such horizons are unlikely to		
			be laterally extensive and continuous therefore		
			any impacts will be localised, but not expected		
			to be significant.		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		Highways/traffic/car	Increased pollution risks from routine runoff and	Minor	Slight
		park/railway	accidental spillages of fuels and chemicals	Adverse	
		movements	during the operational phase could impact		
			groundwater quality within the vicinity of the		
			sink, but this is not anticipated to be significant		
			due to the low permeability of the glacial till.		
4 sinks	High	Piling	Given the distance from the Scheme boundary,	No Impact	n/a
			no long-term operational impacts are expected.		
		Excavations for			
		attenuation ponds			
		and cuttings			
		Permanent			
		construction of			
		embankments.			
		Highways/traffic/car			
		park/railway			

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		movements			
All historical	High	Piling	Given the distance from the Scheme boundary,	No Impact	n/a
wells			no long-term operational impacts are expected.		
		Excavations for			
		attenuation ponds			
		and cuttings			
		Permanent			
		construction of			
		embankments.			
		Highways/traffic/car			
		park/railway			
		movements			
Lancaster	High	Piling	Given that the sheet piling is located along the	Negligible	Slight
Canal, Lady			canal sides there could be very slight alterations		
Head Runnel			to baseflow contributions from the piling.		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
and Unnamed			However, given the extent of this sheet piling		
watercourse			compared to the length of the watercourse these		
through centre			impacts are expected to be negligible.		
of site (tributary					
to Savick		Excavations for	Long-term drainage of excavations could	Minor	Slight
Brook)		attenuation ponds	change the groundwater flow and draw in	Adverse	
		and cuttings	contamination from spillages, which in turn may		
			have minor impacts to watercourse flowing		
			through the Scheme boundary. However, due to		
			the low permeability of glacial till and lack of		
			groundwater flow pathways, such impacts are		
			not expected to be significant.		
		Permanent	The presence of the embankments could cause	Minor	Slight
		construction of	consolidation of the materials underneath the	Adverse	
		embankments.	embankment, which may cause the ground		
			beneath the structure to compress affecting		
			groundwater storage, pore-water pressure		
			distribution, and magnitude and direction of		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
			groundwater flow within the groundwater bearing		
			horizons. However, such horizons are unlikely to		
			be laterally extensive and continuous therefore		
			any impacts will be localised, but not expected		
			to be significant.		
		Highways/traffic/car	Increased pollution risks from routine runoff and	Minor	Slight
		park/railway	accidental spillages of fuels and chemicals	Adverse	
		movements.	during the operational phase could impact		
			groundwater quality within the vicinity of the		
			station, hence impacting the quality of the		
			baseflow. However, given the lack of pathways		
			and low permeability of the glacial till any		
			impacts would likely equilibrate before the		
			watercourses are reached.		
Western	High	Piling.	Given that the sheet piling is located along the	Negligible	Slight
Watercourse			canal sides there could be very slight alterations		
and Savick			to baseflow contributions from the piling,		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
Brook			however given the extent of this sheet piling		
			compared to the length of the watercourse these		
			impacts are expected to be negligible.		
		Excavations for	Long-term drainage of excavations could	No Impact	n/a
		attenuation ponds	change the groundwater flow and draw in		
		and cuttings.	contamination from spillages. The attenuation		
			ponds are located far enough from the		
			watercourses that no impacts are expected to		
			propagate as far reaching as the watercourses		
			therefore any groundwater baseflow		
			contributions will not be impacted.		
		Construction of	The presence of the embankments could cause	Minor	Slight
		embankments.	consolidation of the materials underneath the	Adverse	
			embankment, which may cause the ground		
			beneath the structure to compress affecting		
			groundwater storage, pore-water pressure		
			distribution, and magnitude and direction of		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
			groundwater flow within the groundwater bearing		
			horizons. However, such horizons are unlikely to		
			be laterally extensive and continuous therefore		
			any impacts will be localised, but not expected		
			to be significant.		
		Highways/traffic/car	Increased pollution risks from routine runoff and	Minor	Slight
		park/railway	accidental spillages of fuels and chemicals	Adverse	
		movements.	during the operational phase could impact		
			groundwater quality within the vicinity of the		
			station, hence impacting the quality of the		
			baseflow. However, given the lack of pathways		
			and low permeability of the glacial till any		
			impacts would likely equilibrate before the		
			watercourses are reached.		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
Glacial till	Medium	Sheet	The introduction of piles in the ground may	Minor	
Secondary A		piling/piling/foundations	reduce groundwater storage and could result	Adverse	
aquifer		of canal bridge,	in water level changes to facilitate movement		
		footbridge and	of groundwater around these impermeable		
		staircase and station	structures. Under such circumstances		
		platform.	groundwater flow paths could be impacted.		
			Interaction with piles/sheet piles may also		
			cause localised changes in water quality.		
			However, due to low permeability of the		
			glacial till and given its areal extent is much		
			greater than the proposed works, any impacts		
			on groundwater flow and/or quality is likely to		
			be minimal.		
			Where groundwater exists, this is likely to be		
			in discrete horizons, which would equilibrate		
			reasonably quickly following installation of		
			piles/sheet piles and unlikely to have far-		

Table A.3 Assessment of operational impacts on groundwater receptors

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
			reaching implications for groundwater flow		
			and/or quality, as such pathways should not		
			exist, however due to the uncertainties and		
			lack of GI minor impacts cannot be		
			discounted.		
		Excavation of	The presence of the attenuation pond could	Minor	Slight
		attenuation pond for	result in reduced storage and localised water	Adverse	
		the new road and	level changes to facilitate movement of		
		roundabout, and	groundwater around the pond. Under such		
		underground	circumstances groundwater flow paths could		
		attenuation pond.	be impacted. If unlined there is the potential		
			for interactions between any groundwater		
			bearing horizons within the glacial till and the		
			content of the attenuation pond which could		
			change the chemistry of the groundwater.		
			However, due to the discrete nature of		
			groundwater bearing horizons any changes		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
			would not have any far-reaching implications		
			as such pathways should not exist. Long-term		
			drainage of excavations could change		
			groundwater flow and draw in contamination		
			from spillages which has a knock-on effect to		
			watercourses.		
		Permanent	The presence of the embankments could	Minor	Slight
		construction of	cause consolidation of the materials	Adverse	
		embankments.	underneath the embankment, which may		
			cause the ground beneath the structure to		
			compress affecting groundwater storage,		
			pore-water pressure distribution, and		
			magnitude and direction of groundwater flow		
			within the groundwater bearing horizons.		
			However, such horizons are unlikely to be		
			laterally extensive and continuous therefore		
			any impacts will be localised.		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		Highways/traffic/car	Increased pollution risks from routine runoff	Minor	Slight
		park.	and accidental spillages of fuels and	Adverse	
			chemicals during the operational phase could		
			directly impact the underlying aquifer, given		
			the direct nature of this minor impacts to		
			groundwater quality could arise, however		
			given the localised nature of the groundwater		
			in more permeable horizons any		
			contamination would be isolated.		
Sherwood	Very High	Piling/sheet	The introduction of piles in the ground may	Negligible	Slight
Sandstone		piling/foundations of	reduce groundwater storage and could result		
Principal		canal bridge,	in water level changes to facilitate movement		
aquifer		footbridge and	of groundwater around these impermeable		
		staircase and station	structures. However, given the depth of the		
		platform.	Sherwood Sandstone Principal aquifer and		
			the protection offered by the overlying glacial		
			till, negligible impacts are predicted as piles		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
			are not expected to intercept the sandstone.		
		Excavations for	Given the depth of the sandstone, no long-	No Impact	n/a
		attenuation ponds and	term impacts are expected from the		
		cuttings and presence	installation of underground attenuation		
		of embankments.	storage, as this will be located within the		
			overlying glacial till		
		Highways/traffic/car	Increased pollution risks from routine runoff	No Impact	n/a
		park.	and accidental spillages of fuels and		
			chemicals during the operational phase are		
			unlikely to reach the Sherwood Sandstone		
			given its depth underneath the glacial till and		
			the lack of vertical pathways.		
SPZ 3	Medium	Piling/sheet	The introduction of piles in the ground may	Negligible	Neutral
		piling/foundations of	reduce groundwater storage and could result		
		canal bridge,	in water level changes to facilitate movement		
		footbridge and	of groundwater around these impermeable		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		staircase and station	structures. However, given the depth of the		
		platform.	Sherwood Sandstone Principal aquifer and		
			the protection offered by the overlying glacial		
			till, negligible impacts are predicted as piles		
			are not expected to intercept the sandstone		
			which the SPZ relates.		
		Excavations for	Given the depth of the SPZ, no long-term	No Impact	n/a
		attenuation ponds and	impacts are expected from the installation of		
		cuttings.	underground attenuation storage, as this will		
			be located within the overlying glacial till.		
		Highways/traffic/car	Increased pollution risks from routine runoff	No Impact	n/a
		park.	and accidental spillages of fuels and		
			chemicals during the operational phase are		
			unlikely to reach the SPZ given its depth		
			underneath the glacial till which will offer		
			sufficient protection.		
Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
---------------	------------	-----------------------	---	------------	--------------
		Activity			
Issue of Lady	High	Piling for footbridge	The introduction of piles in the ground may	Negligible	Slight
Head Runnel		and staircase.	reduce groundwater storage and could result		
			in water level changes to facilitate movement		
			of groundwater around these impermeable		
			structures. However, due to low permeability		
			of the glacial till and given its areal extent is		
			much greater than the proposed works, any		
			impacts on groundwater flow and/or quality is		
			likely to equilibrate before the issue is		
			reached.		
			The piling is unlikely to have far-reaching		
			implications for groundwater flow and/or		
			quality, as such pathways should not exist,		
			therefore the quality of groundwater at the		
			issue should not be impacted.		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		Construction of	The presence of the embankments could	Minor	Slight or
		embankments.	cause consolidation of the materials	Adverse	Moderate
			underneath the embankment, which may		
			cause the ground beneath the structure to		
			compress affecting groundwater storage,		
			pore-water pressure distribution, and		
			magnitude and direction of groundwater flow		
			within the groundwater bearing horizons.		
			However, such horizons are unlikely to be		
			laterally extensive and continuous therefore		
			any impacts will be localised but given the		
			close proximity of this issue impacts cannot		
			be discounted.		
		Excavations for	Long-term drainage of excavations could	Negligible	Slight
		attenuation ponds and	change the groundwater flow and draw in		
		cuttings.	contamination from spillages. Given the close		
			proximity of the issue to the proposed station		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
			changes to groundwater flow and quality at		
			the issue could be observed if a pathway is		
			present which in turn would impact the		
			watercourse, however any impacts are likely		
			to be negligible.		
		Highways/traffic/car	Increased pollution risks from routine runoff	Negligible	Slight
		park.	and accidental spillages of fuels and		
			chemicals during the operational phase could		
			impact groundwater quality within the vicinity		
			of the issue given its close proximity to the		
			road.		
Issue of	High	Piling.	Given the distance of the issue from the	No Impact	n/a
Central			Scheme boundary no long-term impacts are		
Watercourse			predicted due to the localised nature of any		
			piling impacts		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		Excavations for	Given the temporary nature of the dewatering,	Negligible	Slight
		attenuation ponds and	no long-term impacts are expected. Given the		
		cuttings and	distance from the Scheme boundary, impacts		
		construction presence	from embankments are likely to equilibrate		
		of embankments.	before the issue is reached.		
		Highways/traffic/car	Increased pollution risks from routine runoff	Negligible	Slight
		park.	and accidental spillages of fuels and		
			chemicals during the operational phase could		
			impact groundwater quality within the vicinity		
			of the issue however given the lack of		
			pathways and low permeability of the till any		
			impacts would likely equilibrate before the		
			issue is reached.		
		Piling.	Given the distance of these issues from the	No Impact	n/a
			Scheme boundary no long-term impacts are		
			predicted due to the localised nature of any		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
			piling impacts.		
		Excavations for attenuation ponds and	Given the distance from the Scheme boundary, no long-term impacts are expected.	No Impact	n/a
		cuttings. Presence of			
		embankments.			
		Highways/traffic/car	Given the distance from the works, no	No Impact	n/a
		park.	increased pollution risks are predicted at		
			these locations.		
Sink north of	High	Piling.	Given the distance of the sink from proposed	Negligible	Slight
railway line			piling works negligible long-term impacts are		
			predicted due to the localised nature of any		
			piling impacts.		
		Excavations for	Increased pollution risks from routine runoff	Negligible	Slight
		attenuation ponds and	and accidental spillages of fuels and		
			chemicals during the operational phase could		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		cuttings.	impact groundwater quality within the vicinity,		
			however given the lack of pathways and low		
			permeability of the till any impacts would likely		
			equilibrate before the sink is reached.		
		Presence of	The presence of the embankments could	Minor	Slight or
		embankments	cause consolidation of the materials	Adverse	Moderate
			underneath the embankment, which may		
			cause the ground beneath the structure to		
			compress affecting groundwater storage,		
			pore-water pressure distribution, and		
			magnitude and direction of groundwater flow		
			within the groundwater bearing horizons.		
			However, such horizons are unlikely to be		
			laterally extensive and continuous therefore		
			any impacts will be localised but given the		
			close proximity impacts of compression on the		
			sink cannot be discounted.		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		Highways/traffic/car	Increased pollution risks from routine runoff	Negligible	Slight
		park.	and accidental spillages of fuels and		
			chemicals during the operational phase could		
			impact groundwater quality at the sink given		
			its location underneath the proposed car park.		
Four sinks	High	Piling	Given the distance of these sinks from the	No Impact	n/a
			Scheme boundary no long-term impacts are		
			predicted due to the localised nature of any		
			piling impacts.		
		Excavations for	Given the distance of the sink from the site,	No Impact	n/a
		attenuation ponds and	no long-term impacts are expected from the		
		cuttings. Presence of	site.		
		embankments			
		Highways/traffic/car	Given the distance from the works, no	No Impact	n/a
		park.	increased pollution risks are predicted at		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
			these locations.		
All historical	High	Piling	Given the distance of the historical wells from	No Impact	n/a
wells			the Scheme boundary, no long-term impacts		
			from piling are predicted.		
		Excavations for	Given the distance of the historical wells from	No Impact	n/a
		attenuation ponds and	the site, no long-term impacts are expected at		
		cuttings. Construction	the wells. The lack of groundwater pathways		
		of embankments	through the glacial till means that any impacts		
			from the site will remain localised and given		
			the closest well is 73m from the Scheme		
			boundary, any impacts to flow/quality are		
			unlikely to be that far reaching.		
		Highways/traffic/car	Given the distance from the works, no	No Impact	n/a
		park.	increased pollution risks are predicted at the		
			well locations. Given that the wells likely		
			abstract from depth and limited vertical		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
			pathways exist it is highly unlikely that any		
			increase pollution would infiltrate to the depth		
			of abstraction		
Lancaster	High	Piling.	Given that the sheet piling is located along the	Negligible	Slight
Canal, Lady			canal sides there could be very slight		
Head Runnel			alterations to baseflow contributions from the		
and Unnamed			piling, however given the extent of this sheet		
watercourse			piling compared to the length of the		
through centre			watercourse these impacts are expected to be		
of site			negligible.		
(tributary to					
Savick Brook)		Excavations for	Long-term drainage of excavations could	No Impact	n/a
		attenuation ponds and	change the groundwater flow and draw in		
		cuttings. Construction	contamination from spillages. The attenuation		
		of embankments.	ponds are located far enough from the		
			watercourses that no impacts are expected to		
			propagate as far reaching as the		
			watercourses therefore any groundwater		

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
			baseflow contributions will not be impacted.		
		Highways/traffic car	Increased pollution risks from routine runoff	No Impact	n/a
		park.	and accidental spillages of fuels and		
			chemicals during the operational phase could		
			impact groundwater quality within the vicinity		
			of the station, hence impacting the quality of		
			the baseflow. However given the lack of		
			pathways and low permeability of the till any		
			impacts would likely equilibrate before the		
			watercourses are reached.		
Western	High	Piling.	Given the distance of these watercourse from	No Impact	n/a
watercourse			the Scheme boundary no long-term impacts		
and Savick			are predicted due to the localised nature of		
Brook			any piling impacts.		
		Excavations for	Given the temporary nature of the dewatering,	No Impact	n/a
		attenuation ponds and			

Receptor	Importance	Design Element/	Impact Description	Magnitude	Significance
		Activity			
		cuttings. Construction	no long-term impacts are expected.		
		of embankments.			
		Highways/traffic/car	Given the distance of these watercourses	No Impact	n/a
		park.	from the works, no increased pollution risks		
			are predicted at these locations.		