Appendix H Greenfield Runoff Calculations

Runoff estimation approach IH124

Greenfield runoff rate

estimation for sites

www.uksuds.com | Greenfield runoff tool

Calculated by:	Andrew James	Site Details	
Site name:	Woodcock Masterplan	Latitude:	53.71681° N
Site location:	Farrington	Longitude:	2.68781° W
in line with Environn	n of the greenfield runoff rates that are used nent Agency guidance "Rainfall runoff mana the SUDS Manuel C753 (Ciria, 2015) and t	agement for developments", Reference:	482279241

SC030219 (2013) , the SuDS Manual C753 (Ciria, 2015) and the non-statutory standards for SuDS (Defra, 2015). This information on greenfield runoff rates may be the basis for setting consents for the drainage of surface water runoff from sites.

Site characteristics					Notes
Total site area (ha): 11	.35				(1) Is Q _{BAR} < 2.0 I/s/ha?
Methodology					(1) 10 GBAR < 2.0 #0/10.
Q _{BAR} estimation metho	d: Calci	ulate fr	om SPR a	and SAAR	When Q_{BAR} is < 2.0 l/s/ha then limiting discharge rates are set
SPR estimation method	l: Calci	ulate fr	om SOIL 1	ype	at 2.0 l/s/ha.
Soil characteristics	Defau	ılt	Edite	d	
SOIL type:	4		4		(2) Are flow rates < 5.0 l/s?
HOST class:	N/A		N/A		
SPR/SPRHOST:	0.47		0.47		Where flow rates are less than 5.0 l/s consent for discharge is usually set at 5.0 l/s if blockage from vegetation and other
Hydrological charac	teristics	D	efault	Edited	materials is possible. Lower consent flow rates may be set where the blockage risk is addressed by using appropriate
SAAR (mm):		987		987	drainage elements.
Hydrological region:		10		10	
Growth curve factor 1 y	ear:	0.87	7	0.87	(3) Is SPR/SPRHOST ≤ 0.3?
Growth curve factor 30	years:	1.7		1.7	Where groundwater levels are low enough the use of
Growth curve factor 10	0 years:	2.08	3	2.08	soakaways to avoid discharge offsite would normally be preferred for disposal of surface water runoff.
Growth curve factor 200	0 years:	2.37	7	2.37	

Greenfield runoff ra	ates Default	Edited
Q _{BAR} (I/s):	81.91	81.91
1 in 1 year (l/s):	71.26	71.26
1 in 30 years (l/s):	139.25	139.25
1 in 100 year (l/s):	170.37	170.37
1 in 200 years (l/s):	194.13	194.13

This report was produced using the greenfield runoff tool developed by HR Wallingford and available at www.uksuds.com. The use of this tool is subject to the UK SuDS terms and conditions and licence agreement, which can both be found at www.uksuds.com/termsand-conditions.htm. The outputs from this tool are estimates of greenfield runoff rates. The use of these results is the responsibility of the users of this tool. No liability will be accepted by HR Wallingford, the Environment Agency, CEH, Hydrosolutions or any other organisation for the use of this data in the design or operational characteristics of any drainage scheme.